
Tomas Mikula

Typed Interaction

with

Session Types
(using Scala and Libretto)

Functional Scala 2022

Model Problem: Canteen

• Customer proceeds through sections, in this order:

1. soups

2. main dishes

3. payment

• Can get any number of items

• as long as supply lasts, otherwise proceed to the next section

• Eats all of the purchased food

• in any order, possibly even before paying

Rules

🍔

💳

🍴

First Sketch

trait Canteen:

 def enter(): Session

trait Session:

 def getSoup(): Option[Soup]

 def getMainDish(): Option[MainDish]

 def payAndClose(card: PaymentCard): Unit

The Interface

class Soup:

 def eat(): Unit

class MainDish:

 def eat(): Unit

Approach I: Naive Objects and Methods

Customer

def customer(canteen: Canteen, card: PaymentCard): Unit =

 val session = canteen.enter()

 val soup = session.getSoup()

 val dish = session.getMainDish()

 session.payAndClose(card)

 soup.foreach(_.eat())

 dish.foreach(_.eat())

Approach I: Naive Objects and Methods

What Could Possibly Go Wrong (1)

def customer(canteen: Canteen, card: PaymentCard): Unit =

 val session = canteen.enter()

 val dish = session.getMainDish()

 val soup = session.getSoup()

 …

Illegal to move from
main dish back to soup

Approach I: Naive Objects and Methods

What Could Possibly Go Wrong (2)

def customer(canteen: Canteen, card: PaymentCard): Unit =

 val session = canteen.enter()

 val soup = session.getSoup()

 session.payAndClose(card)

 val dish = session.getMainDish()

 …

Illegal to get more
items after paying

Approach I: Naive Objects and Methods

What Could Possibly Go Wrong (3)

def customer(canteen: Canteen, card: PaymentCard): Unit =

 val session = canteen.enter()

 val soup = session.getSoup()

 soup.foreach(_.eat())

Illegal to leave
without paying

Approach I: Naive Objects and Methods

What Could Possibly Go Wrong (4)

def customer(canteen: Canteen, card: PaymentCard): Unit =

 val session = canteen.enter()

 val soup = session.getSoup()

 val dish = session.getMainDish()

 session.payAndClose(card)

 dish.foreach(_.eat())

Illegal to waste food
(did not eat the soup)

Approach I: Naive Objects and Methods

What Could Possibly Go Wrong (5)

def customer(canteen: Canteen, card: PaymentCard): Unit =

 val session = canteen.enter()

 val soup = session.getSoup()

 session.payAndClose(card)

 soup.foreach(_.eat())

 soup.foreach(_.eat()) Illegal to eat the

same item twice

Approach I: Naive Objects and Methods

What Could Possibly Go Wrong (6)

def customer(canteen: Canteen, card: PaymentCard): Unit =

 val session = canteen.enter()

 val soup1: Option[Soup] = session.getSoup() // None (ran out)

 val soup2: Option[Soup] = session.getSoup()

 … Illegal to repeatedly ask

for a meal that ran out

Approach I: Naive Objects and Methods

Canteen Implementation

class SessionImpl extends Session:

 enum State:

 case SectionSoup

 case SectionMain

 case SectionPayment

 case Closed

 private var state: State = SectionSoup

 // …

Approach I: Naive Objects and Methods

override def getSoup(): Option[Soup] =

 this.state match

 case SectionSoup =>

 // …

 case SectionMain | SectionPayment | Closed =>

 throw IllegalStateException()

Canteen Implementation: Handling Illegal State (1)
Approach I: Naive Objects and Methods

override def getMainDish(): Option[MainDish] =

 this.state match

 case SectionSoup =>

 // …

 case SectionMain =>

 // …

 case SectionPayment | Closed =>

 throw IllegalStateException()

Canteen Implementation: Handling Illegal State (2)
Approach I: Naive Objects and Methods

override def payAndClose(card: PaymentCard): Unit =

 this.state match

 case SectionPayment | SectionMain | SectionSoup =>

 // …

 case Closed =>

 throw IllegalStateException()

Approach I: Naive Objects and Methods
Canteen Implementation: Handling Illegal State (3)

Approach I: Naive Objects and Methods

• canteen handling illegal state

• customer getting runtime errors and/or resource leaks

Moreover

• bad discoverability of the correct protocol (relying on documentation)

• fragile w.r.t. refactoring or changes in the protocol

Summary

Let’s take a step up!

Approach II: Linearity by Convention

• use types specific to the stages of interaction (SectionSoup, SectionMain, …)

• each having only methods that are legal at that stage

• a method on one stage returns the next stage

• use each object exactly once (linearity)

• only a convention

• but adherence to it can be checked locally

The Idea

Approach II: Linearity by Convention
The Interface

trait Session:

 def proceedToSoups(): SectionSoup

trait SectionSoup:

 def getSoup(): Either[(Soup, SectionSoup), SectionMain]

 def proceedToMainDishes(): SectionMain

trait SectionMain:

 def getMainDish(): Either[(MainDish, SectionMain), SectionPayment]

 def proceedToPayment(): SectionPayment

trait SectionPayment:

 def payAndClose(card: PaymentCard): Unit

Approach II: Linearity by Convention
Customer

def customer(session: Session, card: PaymentCard): Unit =

 val sectionSoup = session.proceedToSoups()

 val (soup, sectionMain) = tryGetSoupAndProceed(sectionSoup)

 val (dish, sectionPay) = tryGetDishAndProceed(sectionMain)

 sectionPay.payAndClose(card)

 soup.foreach(_.eat())

 dish.foreach(_.eat())

Each variable used exactly once.

Linearity ensures adherence to protocol.

Approach II: Linearity by Convention
Canteen Implementation

class SectionSoupImpl extends SectionSoup:

 def getSoup(): Either[(Soup, SectionSoup), SectionMain] =

 // …

 def proceedToMainDishes(): SectionMain =

 // …

No handling of illegal state.

Trusting the client to uphold linearity.

Approach II: Linearity by Convention

• handling illegal state avoided (*)

• no runtime errors or leaks (*)

• type driven: the types+convention guide us towards a correct implementation

• single rule of linearity supersedes all the protocol-specific rules

• more robust w.r.t. refactoring or changes in the protocol (*)

• unclear what may be used non-linearly

(*) provided everyone upholds linearity

• one defector ruins everything

Summary

Linearity Helps

Can we enforce it before execution?

Linearity Helps

Can we enforce it before execution?

Meet Libretto!

Libretto: The Idea

• Programs as data structures

p: A -⚬ B

• Linear by construction (non-linear programs unrepresentable)

• types A, B define the interface of p (protocol of interaction with its surroundings)

• Executed by an interpreter

• IO[A] ~ Free Monad with extra operations

A -⚬ B ~ Free Category with extra operations 
(closed symmetric bimonoidal, traced, distributive, …, not cartesian)

Approach III: Libretto
Canteen: Customer

def customer: (Session |*| PaymentCard) -⚬ PaymentCard =

 λ { case (session |*| card) =>

 val soupSection = Session.enter(session)

 val (soup |*| mainSection) = tryGetSoupAndProceed(soupSection)

 val (dish |*| paySection) = tryGetDishAndProceed(mainSection)

 paySection(card)

 .waitFor(

 joinAll(

 soup .map(eatSoup(_)) .getOrElse(done),

 dish .map(eatMainDish(_)) .getOrElse(done),

)

)

 }

Approach III: Libretto
Canteen: Customer

def customer: (Session |*| PaymentCard) -⚬ PaymentCard =

 λ { case (session |*| card) =>

 val soupSection = Session.enter(session)

 val (soup |*| mainSection) = tryGetSoupAndProceed(soupSection)

 val (dish |*| paySection) = tryGetDishAndProceed(mainSection)

 paySection(card)

 .waitFor(

 joinAll(

 soup .map(eatSoup(_)) .getOrElse(done),

 dish .map(eatMainDish(_)) .getOrElse(done),

)

)

 }

-⚬

Approach III: Libretto
Canteen: Customer

def customer: (Session |*| PaymentCard) -⚬ PaymentCard =

 λ { case (session |*| card) =>

 val soupSection = Session.enter(session)

 val (soup |*| mainSection) = tryGetSoupAndProceed(soupSection)

 val (dish |*| paySection) = tryGetDishAndProceed(mainSection)

 paySection(card)

 .waitFor(

 joinAll(

 soup .map(eatSoup(_)) .getOrElse(done),

 dish .map(eatMainDish(_)) .getOrElse(done),

)

)

 }

-⚬
pair

Approach III: Libretto
Canteen: Customer

def customer: (Session |*| PaymentCard) -⚬ PaymentCard =

 λ { case (session |*| card) =>

 val soupSection = Session.enter(session)

 val (soup |*| mainSection) = tryGetSoupAndProceed(soupSection)

 val (dish |*| paySection) = tryGetDishAndProceed(mainSection)

 paySection(card)

 .waitFor(

 joinAll(

 soup .map(eatSoup(_)) .getOrElse(done),

 dish .map(eatMainDish(_)) .getOrElse(done),

)

)

 }

-⚬

Approach III: Libretto
Canteen: Customer

def customer: (Session |*| PaymentCard) -⚬ PaymentCard =

 λ { case (session |*| card) =>

 val soupSection = Session.enter(session)

 val (soup |*| mainSection) = tryGetSoupAndProceed(soupSection)

 val (dish |*| paySection) = tryGetDishAndProceed(mainSection)

 paySection(card)

 .waitFor(

 joinAll(

 soup .map(eatSoup(_)) .getOrElse(done),

 dish .map(eatMainDish(_)) .getOrElse(done),

)

)

 }

-⚬

Approach III: Libretto
Canteen: Customer

def customer: (Session |*| PaymentCard) -⚬ PaymentCard =

 λ { case (session |*| card) =>

 val soupSection = Session.enter(session)

 val (soup |*| mainSection) = tryGetSoupAndProceed(soupSection)

 val (dish |*| paySection) = tryGetDishAndProceed(mainSection)

 paySection(card)

 .waitFor(

 joinAll(

 soup .map(eatSoup(_)) .getOrElse(done),

 dish .map(eatMainDish(_)) .getOrElse(done),

)

)

 }

-⚬

throws LinearityViolation at assembly time

Approach III: Libretto
Canteen: Customer

Let’s break it!

Approach III: Libretto
Protocol Violation (1)

def customer: (Session |*| PaymentCard) -⚬ PaymentCard =

 λ { case (session |*| card) =>

 val soupSection = Session.enter(session)

 val mainSection = SectionSoup.proceedToMainDishes(soupSection)

 val (dish |*| paySection) = tryGetMainDishAndProceed(mainSection)

 val (soup |*| _) = tryGetSoupAndProceed(soupSection)

 paySection(card)

 .waitFor(

 joinAll(

 soup .map(eatSoup(_)) .getOrElse(done),

 dish .map(eatMainDish(_)) .getOrElse(done),

)

)

 }

Wrong Order

becomes

Linearity Violation

becomes

 Assembly-time error

Approach III: Libretto

def customer: (Session |*| PaymentCard) -⚬ PaymentCard =

 λ { case (session |*| card) =>

 val soupSection = Session.enter(session)

 val (soup |*| mainSection) = tryGetSoupAndProceed(soupSection)

 val (dish |*| paySection) = tryGetDishAndProceed(mainSection)

 // paySection(card)

 card

 .waitFor(

 joinAll(

 soup .map(eatSoup(_)) .getOrElse(done),

 dish .map(eatMainDish(_)) .getOrElse(done),

)

)

 }

Protocol Violation (2)

Not Paying

becomes

Linearity Violation

becomes

 Assembly-time error

Approach III: Libretto

def customer: (Session |*| PaymentCard) -⚬ PaymentCard =

 λ { case (session |*| card) =>

 val soupSection = Session.enter(session)

 val (soup |*| mainSection) = tryGetSoupAndProceed(soupSection)

 val (dish |*| paySection) = tryGetDishAndProceed(mainSection)

 paySection(card)

 .waitFor(

 joinAll(

 // soup .map(eatSoup(_)) .getOrElse(done),

 dish .map(eatMainDish(_)) .getOrElse(done),

)

)

 }

Protocol Violation (3)

Wasting Food

becomes

Linearity Violation

becomes

 Assembly-time error

Approach III: Libretto

def customer: (Session |*| PaymentCard) -⚬ PaymentCard =

 λ { case (session |*| card) =>

 val soupSection = Session.enter(session)

 val (soup |*| mainSection) = tryGetSoupAndProceed(soupSection)

 val (dish |*| paySection) = tryGetDishAndProceed(mainSection)

 paySection(card)

 .waitFor(

 joinAll(

 soup .map(eatSoup(_)) .getOrElse(done),

 soup .map(eatSoup(_)) .getOrElse(done),

 dish .map(eatMainDish(_)) .getOrElse(done),

)

)

 }

Protocol Violation (4)

Double-spending

becomes

Linearity Violation

becomes

 Assembly-time error

Catching Linearity Violations
Approach III: Libretto

test("customer") {

 customer : (Session |*| PaymentCard) -⚬ PaymentCard

}

Code is cheap.

Show me the types!

Done signal traveling left-to-right

Val[A] Scala value of type A

A ⊗ B (concurrent) pair (|*| in code)

A ⊕ B producer choice (|+| in code)

A & B consumer choice (|&| in code)

A =⚬ B function object

Rec[F[_]] recursive type former

Libretto: Types of Interaction
Session Types in Libretto

A -⚬ B
(in-port) (out-port)

-[A] inverts the data-flow through A

-[Done] signal traveling right-to-lef

-[Val[A]] Scala value traveling right-to-lef

-[A ⊗ B] ≃ -[A] ⊗ -[B]

-[A ⊕ B] ≃ -[A] & -[B]

-[A & B] ≃ -[A] ⊕ -[B]

Inversion
Libretto: Types of Interaction

Approach III: Libretto
Canteen: Protocol

type SectionSoup = Rec[[SectionSoup] =>>

 |&| [

 (Soup |*| SectionSoup) |+| SectionMainDish,

 SectionMain,

]

]

Approach III: Libretto
Canteen: Protocol

type SectionSoup = Rec[[SectionSoup] =>>

 |&| [

 (Soup |*| SectionSoup) |+| SectionMain,

 SectionMain,

]

]

consumer choice:

• get soup

• go to main section

Approach III: Libretto
Canteen: Protocol

type SectionSoup = Rec[[SectionSoup] =>>

 |&| [

 (Soup |*| SectionSoup) |+| SectionMain,

 SectionMain,

]

]

consumer choice:

• get soup

• go to main section

 producer choice:

here’s a soup, want another? out of soup, proceed

Approach III: Libretto
Canteen: Protocol

type SectionSoup = Rec[[SectionSoup] =>>

 |&| [

 (Soup |*| SectionSoup) |+| SectionMain,

 SectionMain,

]

]

// helper functions to make a choice

def getSoup: SectionSoup -⚬ ((Soup |*| SectionSoup) |+| SectionMain) =

 unpack > chooseL

def proceedToMainDishes: SectionSoup -⚬ SectionMain =

 unpack > chooseR

consumer choice:

• get soup

• go to main section

 producer choice:

here’s a soup, want another? out of soup, proceed

Approach III: Libretto
Canteen: Protocol

type SectionSoup = Rec[[SectionSoup] =>>

 |&| [

 (Soup |*| SectionSoup) |+| SectionMain,

 SectionMain,

]

]

// factory method to create SectionSoup from A

def from[A](

 onSoupRequest : A -⚬ ((Soup |*| SectionSoup) |+| SectionMain),

 goToMainDishes: A -⚬ SectionMain,

): A -⚬ SectionSoup =

 choice(onSoupRequest, goToMainDishes) > pack

consumer choice:

• get soup

• go to main section

 producer choice:

here’s a soup, want another? out of soup, proceed

Approach III: Libretto
Canteen: Protocol

type SectionMain = Rec[[SectionMain] =>>

 |&| [

 (MainDish |*| SectionMain) |+| SectionPayment,

 SectionPayment,

]

]

type SectionPayment =

 PaymentCard =⚬ PaymentCard

Approach III: Libretto
Canteen: Protocol

opaque type Session = SectionSoup

object Session:

 def proceedToSoups: Session -⚬ SectionSoup =

 id

 def create: SectionSoup -⚬ Session =

 id

Approach III: Libretto
Canteen: Provider

def provider: Done -⚬ Session =

 soupSection > Session.create

def soupSection: Done -⚬ SectionSoup =

 rec { soupSection =>

 SectionSoup.from(

 onSoupRequest =

 λ.+ { done =>

 injectL(makeSoup(done) |*| soupSection(done))

 },

 goToMainDishes =

 mainSection,

)

 }

No handling of illegal state

Approach III: Libretto
Canteen: Provider

def provider: Done -⚬ Session =

 soupSection > Session.create

def soupSection: Done -⚬ SectionSoup =

 rec { soupSection =>

 SectionSoup.from(

 onSoupRequest =

 λ.+ { done =>

 injectL(makeSoup(done) |*| soupSection(done))

 } (using Cosemigroup[Done]),

 goToMainDishes =

 mainSection,

)

 }

No handling of illegal state

Approach III: Libretto
Canteen: Provider

def mainSection: Done -⚬ SectionMainDish =

 rec { mainSection =>

 SectionMainDish.from(

 onDishRequest =

 λ.+ { done =>

 injectL(makeMainDish(done) |*| mainSection(done))

 },

 goToPayment =

 paymentSection,

)

 }

No handling of illegal state

Approach III: Libretto
Canteen: Provider

 Done -⚬ (PaymentCard =⚬ PaymentCard)

def paymentSection: Done -⚬ SectionPayment =

 λ { done =>

 λ.closure { card =>

 card.waitFor(done)

 }

 }

No handling of illegal state

Approach III: Libretto
Canteen: Provider

 Done -⚬ (PaymentCard =⚬ PaymentCard)

def paymentSection: Done -⚬ SectionPayment =

 λ { done =>

 λ.closure { card =>

 card.waitFor(done)

 }

 }

No handling of illegal state

Approach III: Libretto
Canteen: Putting It All Together

object Main extends StarterApp:

 override def blueprint: Done -⚬ Done =

 λ.+ { started =>

 val cardIn = started > PaymentCard.issue

 val session = provider(started)

 val cardOut = customer(session |*| cardIn)

 PaymentCard.shred(cardOut)

 }

• handling illegal state avoided

• runtime errors and resource leaks prevented

• type driven: the types guide us towards a correct implementation

• protocol expressed by types

• robust w.r.t. refactoring or changes in the protocol

• no confusion about what’s linear: non-linearity witnessed by a typeclass

Summary
Approach III: Libretto

There’s More in Libretto
• seamless concurrency

• not built on effects

• streams expressible using types we have already seen

type Stream[A] = Rec[[Self] =>> Done |&| (Done |+| (Val[A] |*| Self))]

• custom combinators need not fall back to effects

• effects

• resource safety

• linearity avoids the complexities of managing scopes

• programs as values without opaque Scala functions inside

• whole new world of possibilities

 Give it a try

https://github.com/TomasMikula/libretto/

👉

https://github.com/TomasMikula/libretto/

