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Most remaining should not need upfront investment

Learn as you go!
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a set of principles for library design

Discoverability Good News! gu

. | Scala ecosystem
Guidance | already decent at

3 | JING principles |
Ramp, but no ceiling —

Safety Sy 1\ o ideal world s

- Knowing Scala is all you need. ',
Hide unnecessary details | Pick up the rest through JING

Zero setup
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a library for programming against OpenAPI specification
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OpenAPI

a specification language for HT TP APIs

Let JING guide us through the rest!
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Demo ime!
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Exhaustive case and error handling

* not just the happy path

Type-safe

o String literals are types

Servers supported

* Incl. exhaustive endpoint handling

[ ocalized disruption for unsupported OpenAPI features
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Discoverabillity £ Objection

Applicable only to

(Guidance .
well-understood domains

Ramp, but no celiling

Satety

Libraries, almost by definition,
are for well-understood domains

Hide unnecessary details

Zero setup



Etiology

(the study of causes or origins)

Why does JING look the way it does?
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Future Work

Make feature-complete enough

Avoid excessive allocations

o Flatter representation of Vvalues

* Skip intermediate Json objects

ScalaDays 7 N
e ala Jsoniter, but parsing into Values When your DSL

Needs to Support
User-Defined : ;
Functions o ) I

 ala Chimney or Ducktape, but transforming fro{ Tomas Mikula

Auto-derive transformation to a (pre-existing)

MADRID

———— . e e e ———— .- = = = _ _ — . P == _ v — = " R

eifiedg Transformation

e Transformation|[A, Scalal[B]] compiledfo Array|[Byte] => B | Error

e |.e. parse directly to the domain model, skipping Vvalues
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Hell yeah!

JING Vision: All you need to know is Scala.

The rest? Just Import ’N’ Go!
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Thank you!

github.com/TomasMikula/jing



https://github.com/TomasMikula/jing

