Just Import 'N' Go
Spec-first APls without Codegen

Tomas Mikula

Just Import N’ Go (JING)

a library for programming against OpenAPI specification

Just Import ’N’ Go (JING)

a library for programming against OpenAPI specification

Most libraries are not worth learning!

Just Import ’N’ Go (JING)

a library for programming against OpenAPI specification

Most libraries are not worth learning!
including JING

Just Import ’N’ Go (JING)

a library for programming against OpenAPI specification

Most libraries are not worth learning!
including JING

| am not going to teach you JING.

Most libraries are not worth learning!

Most tools are not worth learning!

Most tools are not worth learning!

Most tools are not worth learning!

Most tools are not worth learning!

Imagine your favorite app needing an instruction manual

Most tools are not worth learning!

Imagine your favorite app needing an instruction manual

Most tools are not worth learning!

Imagine your favorite app needing an instruction manual

Most tools are not worth learning!

Imagine your favorite app needing an instruction manual

before

Most tools are not worth learning!

Imagine your favorite app needing an instruction manual

before playing a song

Most tools are not worth learning!

Imagine your favorite app needing an instruction manual

before ordering food

Most tools are not worth learning!

Imagine your favorite app needing an instruction manual

before booking a ride

Most tools are not worth learning!

Imagine your favorite app needing an instruction manual

before making a payment

Most tools are not worth learning!

Imagine your favorite app needing an instruction manual

before making a payment

They should just get the job done!

Most tools are not worth learning!

Imagine your favorite app needing an instruction manual

before making a payment

They should just get the job done!

without the need to be learnt

Most tools are not worth learning!

Most tools are not worth learning!

Most remaining should not need upfront investment

Most tools are not worth learning!

Most remaining should not need upfront investment

Learn as you go!

Just Import N’ Go (JING)

a library for programming against OpenAPI specification

Just Import ’N’ Go (JING)

a set of principles for library design

Just Import ’N’ Go (JING)

a set of principles for library design

* Discoverability

Just Import ’N’ Go (JING)

a set of principles for library design

* Discoverabillity Via local exploration from where | am now

Just Import ’N’ Go (JING)

a set of principles for library design

* Discoverabillity Via local exploration from where | am now

Just Import ’N’ Go (JING)

a set of principles for library design

* Discoverabillity Via local exploration from where | am now

Type the dot

Just Import N’ Go (JING)

a set of principles for library design

* Discoverabillity Via local exploration from where | am now

Type the dot

. ook In the companion object

Just Import N’ Go (JING)

a set of principles for library design

* Discoverabillity Via local exploration from where | am now

Type the dot
. ook In the companion object

Pattern match

Just Import N’ Go (JING)

a set of principles for library design

* Discoverabillity Via local exploration from where | am now

Type the dot
. ook In the companion object
Pattern match

W Peek at Scaladoc

Just Import N’ Go (JING)

a set of principles for library design

* Discoverabillity Via local exploration from where | am now

Type the dot
. ook In the companion object
Pattern match

W Peek at Scaladoc

Compiler error message

Just Import ’N’ Go (JING)

a set of principles for library design

* Discoverabillity Via local exploration from where | am now

Just Import ’N’ Go (JING)

a set of principles for library design

* Discoverabillity Via local exploration from where | am now

e (Guidance

Just Import N’ Go (JING)

a set of principles for library design

* Discoverabillity Via local exploration from where | am now

e (Guidance Facilitate introduction to the domain

Just Import ’N’ Go (JING)

a set of principles for library design

* Discoverabillity Via local exploration from where | am now
* Guidance Facilitate introduction to the domain

 Ramp, but no celling

Just Import N’ Go (JING)

a set of principles for library design

* Discoverabillity Via local exploration from where | am now
* Guidance Facilitate introduction to the domain

 Ramp, but no celling Simple things simple, complex things possible

Just Import ’N’ Go (JING)

a set of principles for library design

Discoverabillity Via local exploration from where | am now
Guidance Facilitate introduction to the domain
Ramp, but no celling Simple things simple, complex things possible

Safety

Just Import N’ Go (JING)

a set of principles for library design

Discoverabillity Via local exploration from where | am now
Guidance Facilitate introduction to the domain
Ramp, but no celling Simple things simple, complex things possible

Safety Provide reasonable guardrails

Just Import N’ Go (JING)

a set of principles for library design

Discoverabillity Via local exploration from where | am now
Guidance Facilitate introduction to the domain

Ramp, but no celling Simple things simple, complex things possible
Safety Provide reasonable guardrails

Hide unnecessary details

Just Import N’ Go (JING)

a set of principles for library design

Discoverabillity Via local exploration from where | am now
Guidance Facilitate introduction to the domain

Ramp, but no celling Simple things simple, complex things possible
Safety Provide reasonable guardrails

Hide unnecessary details Operate at the right level of abstraction

Just Import N’ Go (JING)

a set of principles for library design

Discoverabillity Via local exploration from where | am now
Guidance Facilitate introduction to the domain

Ramp, but no celling Simple things simple, complex things possible
Safety Provide reasonable guardrails

Hide unnecessary details Operate at the right level of abstraction

Zero setup

Just Import N’ Go (JING)

a set of principles for library design

Discoverabillity Via local exploration from where | am now
Guidance Facilitate introduction to the domain

Ramp, but no celling Simple things simple, complex things possible
Safety Provide reasonable guardrails

Hide unnecessary details Operate at the right level of abstraction

Zero setup Just Import 'N’ Go!

Just Import ’N’ Go (JING)

a set of principles for library design

Discoverabillity

Guidance

Ramp, but no ceiling
Safety

Hide unnecessary detalls

Zero setup

Just Import ’N’ Go (JING)

a set of principles for library design
Discoverability
Guidance
Ramp, but no celiling
Safety
Hide unnecessary details

Zero setup

Just Import ’N’ Go (JING)

a set of principles for library design

Discoverabillity m Good News! sud

. | Scala ecosystem
Guidance | already decent at

N | JING principles |
Ramp, but no ceiling o

Safety
Hide unnecessary details

Zero setup

Just Import ’N’ Go (JING)

a set of principles for library design

Discoverability Good News! gu

. | Scala ecosystem
Guidance | already decent at

N | JING principles |

In an ideal world

Safety
Hide unnecessary details

Zero setup

Just Import N’ Go (JING)

a set of principles for library design

Discoverability Good News! gu

. | Scala ecosystem
Guidance | already decent at

3 | JING principles |
Ramp, but no ceiling —

Safety Sy 1\ o ideal world s

- Knowing Scala is all you need. ',
Hide unnecessary details | Pick up the rest through JING

Zero setup

Just Import N’ Go (JING)

a library for programming against OpenAPI specification

Just Import N’ Go (JING)

a library for programming against OpenAPI specification

OpenAPI

Just Import N’ Go (JING)

a library for programming against OpenAPI specification

OpenAPI

a specification language for HT TP APIs

Just Import N’ Go (JING)

a library for programming against OpenAPI specification

OpenAPI

a specification language for HT TP APIs

Let JING guide us through the rest!

Just Import N’ Go (JING)

a library for programming against OpenAPI specification

OpenAPI

a specification language for HT TP APIs

Let JING guide us through the rest!

Just Import N’ Go (JING)

a library for programming against OpenAPI specification

l.e. specification first

OpenAPI

a specification language for HT TP APIs

Let JING guide us through the rest!

Spec-first APIs

Spec-first APIs

SotA:

Spec-first APIs

SotA:

Spec-first APIs

Codeger>

SotA:

Spec-first APIs

£ Scala
Codeger> _— \

SotA:

Spec-first APIs

£ Scala
Codeger> _— \ Import>

SotA:

Spec-first APIs

Codeger>

SotA:

http://vecteezy.com

Spec-first APIs

474 OPENAPI needs Hscat
Import> i —

setup

Codeger>

SotA:

http://vecteezy.com

Spec-first APIs

SotA:

http://vecteezy.com

Spec-first APIs

SotA:

JING:

http://vecteezy.com

SotA:

JING:

Spec-first APIs

474 OPENAPI

74 OPENAPI

http://vecteezy.com

SotA:

JING:

Spec-first APIs

474 OPENAPI

474 OPENAPI

Import >

http://vecteezy.com

SotA:

JING:

Spec-first APIs

474 OPENAPI

74 OPENAPI

Import

http://vecteezy.com
http://vecteezy.com

SotA:

JING:

Spec-first APIs

474 OPENAPI

74 OPENAPI

http://vecteezy.com
http://vecteezy.com

Demo ime!

Have | mentioned

Have | mentioned

 Exhaustive case and error handling

Have | mentioned

 Exhaustive case and error handling

* not just the happy path

Have | mentioned

 Exhaustive case and error handling

* not just the happy path

» Jype-safe

Have | mentioned

 Exhaustive case and error handling

* not just the happy path

» Jype-safe

o String literals are types

Have | mentioned

 Exhaustive case and error handling

* not just the happy path

» Jype-safe

o String literals are types

e Servers supported

Have | mentioned

 Exhaustive case and error handling

* not just the happy path

» Jype-safe

o String literals are types

e Servers supported

* Incl. exhaustive endpoint handling

Have | mentioned

Exhaustive case and error handling

* not just the happy path

Type-safe

o String literals are types

Servers supported

* Incl. exhaustive endpoint handling

[ocalized disruption for unsupported OpenAPI features

JING Principles Review

Discoverabillity

Guidance

Ramp, but no celiling
Safety

Hide unnecessary details

Zero setup

JING Principles Review

Discoverability 4/
Guidance

Ramp, but no celiling
Safety

Hide unnecessary details

Zero setup

JING Principles Review

+ Discoverability 4/

e (Guidance \/

 Ramp, but no ceiling

o Safety

 Hide unnecessary detalls

e Zero setup

JING Principles Review

+ Discoverability 4/

e (Guidance \/

. Ramﬁ,/but no ceiling

o Safety

 Hide unnecessary detalls

e Zero setup

JING Principles Review

+ Discoverability 4/

e (Guidance \/

o Ramﬁ,/but no celling %ot feature complete

o Safety

 Hide unnecessary detalls

e Zero setup

JING Principles Review

+ Discoverability 4/

e (Guidance \/

o Ramﬁ,/but no celling %ot feature complete

o Safety ‘/

 Hide unnecessary detalls

e Zero setup

JING Principles Review

+ Discoverability 4/

e (Guidance \/

o Ramﬁ,/but no celling %ot feature complete

o Safety ‘/

 Hide unnecessary detalls \/

e Zero setup

JING Principles Review

+ Discoverability 4/

e (Guidance \/

o Ramﬁ,/but no celling %ot feature complete

o Safety ‘/

 Hide unnecessary detalls \/

e Zero setup /

JING Principles Review

Discoverabillity

Guidance

Ramp, but no celiling
Safety

Hide unnecessary details

Zero setup

JING Principles Review

Discoverability £ Objection

Applicable only to

(Guidance .
well-understood domains

Ramp, but no celling
Safety
Hide unnecessary details

Zero setup

JING Principles Review

Discoverabillity £ Objection

Applicable only to

(Guidance .
well-understood domains

Ramp, but no celiling

Satety

Libraries, almost by definition,
are for well-understood domains

Hide unnecessary details

Zero setup

Etiology

(the study of causes or origins)

Why does JING look the way it does?

Single, structurally typed value

Single, structurally typed value

val api = jing.openapi(“...")

Single, structurally typed value

val api = jing.openapi(“..."”) : OpenApiSpec {
val schemas: A
type Pet

val Pet: ObjectSchemaCompanion[Pet, ...

/] ...

}
val paths: {

val /pet : {
val Post: HttpEndpoint[..., ...]
val Put: HttpEndpoint[..., ...l

/] .
h

[/ .
1

Single, structurally typed value

val api = jing.openapi(“..."”) : OpenApiSpec {
val schemas: A

 No generated classes/objects type Pet

/] ...

}
val paths: {

val /pet : {
val Post: HttpEndpoint[..., ...]
val Put: HttpEndpoint[..., ...]
/] .

h
/] .

1

val Pet: ObjectSchemaCompanion[Pet, ...

Single, structurally typed value

val api = jing.openapi(“..."”) : OpenApiSpec {
val schemas: A
 No generated classes/objects type Pet
val Pet: ObjectSchemaCompanion[Pet, ...
 Each type either: .
}
val paths: {

val /pet : {
val Post: HttpEndpoint[..., ...]
val Put: HttpEndpoint[..., ...]
/] .

h
/] .

1

Single, structurally typed value

val api = jing.openapi(“..."”) : OpenApiSpec {
val schemas: A
* No generated classes/objects type Pet
val Pet: ObjectSchemaCompanion[Pet, ...
* Each type either: .
pre-defined in the library b
val paths: {

val /pet : {
val Post: HttpEndpoint[..., ...]
val Put: HttpEndpoint[..., ...]
/] .

h
/] .

1

Single, structurally typed value

val api = jing.openapi(“..."”) : OpenApiSpec {
val schemas: A
* No generated classes/objects type Pet
val Pet: ObjectSchemaCompanion[Pet, ...
* Each type either: .
pre-defined in the library b

val paths: {
val /pet : {
val Post: HttpEndpoint[..., ...]
val Put: HttpEndpoint[..., ...]
/] v

h
/] .

defined as type alias

1

Single, structurally typed value

val api = jing.openapi(“..."”) : OpenApiSpec {
val schemas: {
* No generated classes/objects type Pet
val Pet: ObjectSchemaCompanion[Pet, ...
* Each type either: .
pre-defined in the library b
. , val paths: A
defined as type alias val */pete: {
structural refinement val Post: HttpEndpoint[..., ...]
val Put: HttpEndpoint[..., ...]
[/ s
}
[/ s

1

Single, structurally typed value

val api = jing.openapi(“..."”) : OpenApiSpec {
val schemas: {
* No generated classes/objects type Pet
val Pet: ObjectSchemaCompanion[Pet, ...
* Each type either: .
pre-defined in the library b
. , val paths: A
defined as type alias val */pete: {
structural refinement val Post: HttpEndpoint[..., ...]
val Put: HttpEndpoint[..., ...]
e Reason: Y7
}
[/

Single, structurally typed value

val api = jing.openapi(“..."”) : OpenApiSpec {
val schemas: {
 No generated classes/objects type Pet
val Pet: ObjectSchemaCompanion[Pet, ...
 Each type either: .
pre-defined in the library b
. , val paths: A
defined as type alias val */pete: {
structural refinement val Post: HttpEndpoint[..., ...]
val Put: HttpEndpoint[..., ...]
e Reason: Y7
Scala 3 macros cannot }
add new definitions /] ...

Single, structurally typed value

val api = jing.openapi(“..."”) : OpenApiSpec {
val schemas: {
 No generated classes/objects type Pet
val Pet: ObjectSchemaCompanion[Pet, ...
 Each type either: .
pre-defined in the library b
. , val paths: A
defined as type alias val */pete: {
structural refinement val Post: HttpEndpoint[..., ...]
o val Put: HttpEndpointl..., ...]
‘s hd nochoice: 1/ e
Scala 3 macros cannot }
add new definitions /] ...

Why so many strange types?

Why so many strange types?

type Pet = 0bj |

Void
t1d" 7 Into4
""name” 1 Str
""category" :? Category
"photoUrls" :: Arr[Str]
"tags" :? Arr[Tag]
"'status" :? Enum[Str, Void || "available" || "pending" || "sold"]]

Why so many strange types?

type Pet = { Why not “simply” this?:
type Pet = 0Obj [id: Option[Longl], §
Void . name: String,
""1d" «? Int64 E category: Option[Categoryl],

" hame" . Gtp photoUrls: Arrayl[Stringl,

T : t1 1,
""category" 17?7 Category ags: OptionlArraylTagl.
"photoUrls" :: Arr[Str]

""tags" :? Arr[Tagl
"status" :? Enum[Str, Void || "available" || "pending" || "sold"]]

status: Option["available" | "pending" | "sold"],é

Why so many strange types?

type Pet = (Why not “simply” this?:
type Pet = Obj [- id: Option[Long],
Void . name: String,
g gn .2 Int64 : category: Option[Category],
" amet .. Ctr photoUrls: Array[Stringl],

tags: Option[Arrayl[Tagll,

""category" :? Category _ ;
status: Option["available" | "pending" | "sold"], :

"photoUrls" :: Arr[Str] .
""tags" :? Arr[Tagl e e oo e oo e oo e e e ee e
"status" :? Enum[Str, Void || "available" || "pending" || "sold"]]

1. Faithful domain model (optional fields, n-ary sums, base-type of enums)

Why so many strange types?

type Pet = (Why not “simply” this?:
type Pet = 0bj[id: Option[Long],
Void . name: String,
g gn .2 Int64 : category: Option[Categoryl],
i name” .. Gtp photoUrls: Array[Stringl,

tags: Option[Arrayl[Tagll,

"'category'" :? Category _ s
status: Option["available" | "pending" | "sold"], :

"photoUrls" :: Arr[Str] .
""tags" :? Arr[Tagl e e oo e oo e oo e e e ee e
"status" :? Enum[Str, Void || "available" || "pending" || "sold"]]

1. Faithful domain model (optional fields, n-ary sums, base-type of enums)

2. Clear separation of Domain vs. Scala types

Why so many strange types?

type Pet = 0bj |
Void

"id" : 7
"name"”’
"category" 7
"photoUrls" ::
"tags” e
"status” e

1 Str

type Pet = Why not “simply” this?:
id: Option[Longl], i

—
<
©

(D

-

(D

f_|'

[l

. name: String,
Int64 é category: Option[Category],
. photoUrls: Array[Stringl,
tags: Option[Arrayl[Tagll,

Category
Arr[Str]

Arr[Tag] oo e eeeeem e eeeeeem e eeeeeem e eeeeeemeeeeeeeeeemeeeeeeeeeemeeeeeeeeeemrsn
Enum[Str, Void || "available" || "pending" || "sold"]]

status: Option["available" | "pending" | "sold"],é

1. Faithful domain model (optional fields, n-ary sums, base-type of enums)

2. Clear separation of Domain vs. Scala types

3. Ad-hoc tuples or unions don’t make good GADT indices

Why so many strange types?

type Pet = (Why not “simply” this?:
type Pet = 0bj[id: Option[Long],
Void . name: String,
g gn .2 Int64 : category: Option[Category],
i name” .. Gtp photoUrls: Array[Stringl,

tags: Option[Arrayl[Tagll,

"'category'" :? Category _ s
status: Option["available" | "pending" | "sold"], :

"photoUrls" :: Arr[Str]

"tags" 12 ATTITAG] b

S ! 1 D : 1 : 1 1 : 1 1 1
| chose: status :? Enum[Str, Void || "available" || "pending" || "sold"]]

1. Faithful domain model (optional fields, n-ary sums, base-type of enums)

2. Clear separation of Domain vs. Scala types

3. Ad-hoc tuples or unions don’t make good GADT indices

What’s the point of Value[1?

What’s the point of Value[1?

val pet = Pet(???)

What’s the point of Value[1?

val pet = Pet(???) : Valuel[Pet]

What’s the point of Value[1?

val pet = Pet(???) : Valuel[Pet]

1. To reinforce clear separation of Domain vs. Scala types,

keep Domain types uninhabited at the Scala level.

What’s the point of Value[1?

val pet = Pet(???) : Valuel[Pet]

1. To reinforce clear separation of Domain vs. Scala types,

keep Domain types uninhabited at the Scala level.

type Pet = Objl.. || -« || -]

What’s the point of Value[1?

val pet = Pet(???) : Valuel[Pet]

1. To reinforce clear separation of Domain vs. Scala types,

keep Domain types at the Scala level.

type Pet = Objl.. || -« || -.]

What’s the point of Value[1?

val pet = Pet(???) : Value[Pet]
1. To reinforce clear separation of Domain vs. Scala types,
keep Domain types at the Scala level.
type Pet = Objl.. || «. || -.]

2. Freedom to redefine Va lue (e.g. as a match type)

while 0bj, ||, ::, Enum, ... remain class types (good GADT indices)

What’s the point of Value[1?

val pet = Pet(???) : Value[Pet]
1. To reinforce clear separation of Domain vs. Scala types,
keep Domain types at the Scala level.
type Pet = Objl.. || «. || -.]

2. Freedom to redefine Va lue (e.g. as a match type)

while 0bj, ||, ::, Enum, ... remain class types (good GADT indices)

Schema[0Obj[..]]

What’s the point of Value[1?

val pet = Pet(???) : Value[Pet]
1. To reinforce clear separation of Domain vs. Scala types,
keep Domain types at the Scala level.
type Pet = Objl.. || «. || -.]

2. Freedom to redefine Va lue (e.g. as a match type)

while 0bj, ||, ::, Enum, ... remain class types (good GADT indices)

Schemal[Obj[..]] “index” 0bj implies a specific
case of the Schema ADT

What’s the point of Value[1?

val pet = Pet(???) : Valuel[Pet]

| chose: .
1. To reinforce clear separation of Domain vs. Scala types,

keep Domain types at the Scala level.
type Pet = Objl.. || «. || -.]

2. Freedom to redefine Va lue (e.g. as a match type)

while 0bj, ||, ::, Enum, ... remain class types (good GADT indices)

Schemal[Obj[..]] “index” 0bj implies a specific
case of the Schema ADT

Future Work

Future Work

Future Work

Future Work

 Make feature-complete enough

Future Work

 Make feature-complete enough

e Avoid excessive allocations

Future Work

 Make feature-complete enough

e Avoid excessive allocations

o Flatter representation of Vvalues

Future Work

 Make feature-complete enough

e Avoid excessive allocations

o Flatter representation of Vvalues

* Skip intermediate Json objects

Future Work

 Make feature-complete enough

e Avoid excessive allocations

o Flatter representation of Vvalues

* Skip intermediate Json objects

« ala Jsoniter, but parsing into values

Future Work

 Make feature-complete enough

e Avoid excessive allocations

o Flatter representation of Vvalues

* Skip intermediate Json objects

« ala Jsoniter, but parsing into values

* Auto-derive transformation to a (pre-existing) Scala class

Future Work

 Make feature-complete enough

e Avoid excessive allocations

o Flatter representation of Vvalues

* Skip intermediate Json objects

« ala Jsoniter, but parsing into values

* Auto-derive transformation to a (pre-existing) Scala class

e ala Chimney or Ducktape, but transforming from values

Future Work

Make feature-complete enough

Avoid excessive allocations

o Flatter representation of Vvalues

* Skip intermediate Json objects

« ala Jsoniter, but parsing into values

Auto-derive transformation to a (pre-existing) Scala class

e ala Chimney or Ducktape, but transforming from values

Reified Transformation

Future Work

Make feature-complete enough

Avoid excessive allocations

o Flatter representation of Vvalues

* Skip intermediate Json objects

« ala Jsoniter, but parsing into values

Auto-derive transformation to a (pre-existing) Scala class

e ala Chimney or Ducktape, but transforming from values

Reified Transformation

e Transformation[A, Scala[B]] compiledto Array[Byte] => B | Error

Future Work

Make feature-complete enough

Avoid excessive allocations

o Flatter representation of Vvalues

* Skip intermediate Json objects

« ala Jsoniter, but parsing into values

Auto-derive transformation to a (pre-existing) Scala class

e ala Chimney or Ducktape, but transforming from values

Reified Transformation

e Transformation[A, Scala[B]] compiledto Array[Byte] => B | Error

e |.e. parse directly to the domain model, skipping Values

Future Work

Make feature-complete enough

Avoid excessive allocations

o Flatter representation of Vvalues

* Skip intermediate Json objects

ScalaDays 7 N
e ala Jsoniter, but parsing into Values When your DSL

Needs to Support
User-Defined : ;
Functions o) I

 ala Chimney or Ducktape, but transforming fro{ Tomas Mikula

Auto-derive transformation to a (pre-existing)

MADRID

———— . e e e ———— .- = = = _ _ — . P == _ v — = " R

eifiedg Transformation

e Transformation|[A, Scalal[B]] compiledfo Array|[Byte] => B | Error

e |.e. parse directly to the domain model, skipping Vvalues

https://www.youtube.com/watch?v=caGbfOSvrGQ

Takeaways

Takeaways

Zero-setup spec-first APl programming?

Takeaways

Zero-setup spec-first APl programming?

Hell yeah!

Takeaways

Zero-setup spec-first APl programming?

Hell yeah!

JING Vision: All you need to know is Scala.

Takeaways

Zero-setup spec-first APl programming?

Hell yeah!

JING Vision: All you need to know is Scala.

The rest? Just Import ’N’ Go!

= Call to Action =

= Call to Action =

JING for

= Call to Action =

JING for

Avro

= Call to Action =

JING for

Avro

gRPC

= Call to Action =

JING for

Avro
gRPC

Smithy

< Call to Action =

JING for
Avro
gRPC
Smithy

GraphQL

< Call to Action =

JING for

Avro
gRPC
Smithy
GraphQL

AsyncAPI

< Call to Action =

JING for

Avro
gRPC
Smithy
GraphQL

AsyncAPI

Thank you!

github.com/TomasMikula/jing

https://github.com/TomasMikula/jing

