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def packagingLine: (Source[Toy] |*| Source[Bone] |*| Source[Biscuit]) -⚬ Source[Present] = 

  rec { self => 

    Source.from( 

      onClose = 

        λ { case (toys |*| bones |*| biscuits) => 

          ??? : $[✔] 

        }, 

      onPoll = 

        λ { case (toys |*| bones |*| biscuits) => 

          ??? : $[Polled[Present]] 

        }, 

    ) 

  }
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def packagingLine: (Source[Toy] |*| Source[Bone] |*| Source[Biscuit]) -⚬ Source[Present] = 

  rec { self => 

    Source.from( 

      onClose = 

        λ { case (toys |*| bones |*| biscuits) => 

          joinAll(close(toys), close(bones), close(biscuits)) 

        }, 

      onPoll = 

        λ { case (toys |*| bones |*| biscuits) => 

          ??? : $[Polled[Present]] 

        }, 

    ) 

  }
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λ { case (toys |*| bones |*| biscuits) => 

  ??? : $[Polled[Present]] 

}



Packaging Dog Presents
λ { case (toys |*| bones |*| biscuits) => 

  poll(toys) switch { 

    case Left( ✔ ) => // no toys left, still have bones and biscuits 

      ??? : $[Polled[Present]] 

    case Right(toy |*| toys) => // got a toy, still have bones and biscuits 

      ??? : $[Polled[Present]] 

  } 

}
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λ { case (toys |*| bones |*| biscuits) => 

  poll(toys) switch { 

    case Left( ✔ ) => // no toys left 

      Polled.empty(joinAll( ✔ , close(bones), close(biscuits))) 

    case Right(toy |*| toys) => // got a toy, still have bones and biscuits 

      ??? : $[Polled[Present]] 

  } 

}
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λ { case (toys |*| bones |*| biscuits) => 

  poll(toys) switch { 

    case Left( ✔ ) => // no toys left 

      Polled.empty(joinAll( ✔ , close(bones), close(biscuits))) 

    case Right(toy |*| toys) => // got a toy, still have biscuits 

      poll(bones) switch { 

        case Left( ✔ ) => // no bones left 

          Polled.empty(joinAll( ✔ , neglect(toy), close(toys), close(biscuits))) 

        case Right(bone |*| bones) => // got a bone, still have toy, toys, biscuits 

          ??? : $[Polled[Present]] 

      } 

  } 

}
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case Right(bone |*| bones) => // got a bone, still have toy, toys, biscuits 

  ??? : $[Polled[Present]]
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case Right(bone |*| bones) => // got a bone 

  Bone.classifySize(bone) switch { 

    case Left(largeBone) => // got a large bone 

      pullThreeBiscuits(biscuits) switch { 

        case Left( ✔ ) => // not enough biscuits 

          Polled.empty(joinAll( ✔ , neglect(toy), neglect(largeBone), close(toys), close(bones))) 

        case Right(biscuit3 |*| biscuits) => // got three biscuits 

          Polled.cons( 

            wrap(toy, largeBone, biscuit3) |*| 

            self(toys |*| bones |*| biscuits) 

          ) 

      } 

    case Right(smallBone) => // got a small bone 

      // analogous
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case Right(bone |*| bones) => // got a bone 

  Bone.classifySize(bone) switch { 

    case Left(largeBone) => // got a large bone 

      pullThreeBiscuits(biscuits) switch { 

        case Left( ✔ ) => // not enough biscuits 

          Polled.empty(joinAll( ✔ , neglect(toy), neglect(largeBone), close(toys), close(bones))) 

        case Right(biscuit3 |*| biscuits) => // got three biscuits 

          Polled.cons( 

            wrap(toy, largeBone, biscuit3) |*| 

            self(toys |*| bones |*| biscuits) 

          ) 

      } 

    case Right(smallBone) => // got a small bone 

      // analogous

Unused variable largeBone



Packaging Dog Presents
case Right(bone |*| bones) => // got a bone 

  Bone.classifySize(bone) switch { 

    case Left(largeBone) => // got a large bone 

      pullThreeBiscuits(biscuits) switch { 

        case Left( ✔ ) => // not enough biscuits 

          Polled.empty(joinAll( ✔ , neglect(toy), neglect(largeBone), close(toys), close(bones))) 

        case Right(biscuit3 |*| biscuits) => // got three biscuits 

          Polled.cons( 

            wrap(toy, largeBone, biscuit3) |*| 

            self(toys |*| bones |*| biscuits) 

          ) 

      } 

    case Right(smallBone) => // got a small bone 

      // analogous

close(toys), 

Unused variable largeBone

Overused variable toys
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case Right(bone |*| bones) => // got a bone 

  Bone.classifySize(bone) switch { 

    case Left(largeBone) => // got a large bone 

      pullThreeBiscuits(biscuits) switch { 

        case Left( ✔ ) => // not enough biscuits 

          Polled.empty(joinAll( ✔ , neglect(toy), neglect(largeBone), close(toys), close(bones))) 

        case Right(biscuit3 |*| biscuits) => // got three biscuits 

          Polled.cons( 

            wrap(toy, largeBone, biscuit3) |*| 

            self(toys |*| bones |*| biscuits) 

          ) 

      } 

    case Right(smallBone) => // got a small bone 

      // analogous

close(toys), 

Unused variable largeBone

Overused variable toys

Not properly wired ⇒ unrepresentable

• exception from the surrounding λ

• assembly-time error
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case Right(bone |*| bones) => // got a bone 

  Bone.classifySize(bone) switch { 

    case Left(largeBone) => // got a large bone 

      pullThreeBiscuits(biscuits) switch { 

        case Left( ✔ ) => // not enough biscuits 

          Polled.empty(joinAll( ✔ , neglect(toy), neglect(largeBone), close(toys), close(bones))) 

        case Right(biscuit3 |*| biscuits) => // got three biscuits 

          Polled.cons( 

            wrap(toy, largeBone, biscuit3) |*| 

            self(toys |*| bones |*| biscuits) 

          ) 

      } 

    case Right(smallBone) => // got a small bone 

      // analogous

close(toys), 

Unused variable largeBone

Overused variable toys

Not properly wired ⇒ unrepresentable

• exception from the surrounding λ

• assembly-time error
test("packagingLine") { packagingLine }
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FS2’s Stream.pull

ZIO’s ZStream.toPull

Packaging Dog Presents: Alternatives



FS2’s Stream.pull

ZIO’s ZStream.toPull

• much less safe

• slightly more accidental complexity

Packaging Dog Presents: Alternatives
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Integrating with ZIO Streams
Libretto 
def packagingLine: (Source[Toy] |*| Source[Bone] |*| Source[Biscuit]) -⚬ Source[Present]

ZIO
def go(

  toys: UStream[Toy],

  bones: UStream[Bone],

  biscuits: UStream[Biscuit],

): ZIO[Scope, Nothing, UStream[Present]] =

  (toys.asSource |*| bones.asSource |*| biscuits.asSource)

    .through_(packagingLine)

    .map(_.zstream)



Sunflower Processing Facility

• In: sunflowers

• Out: oil bottles   , packs of seeds


• 5 🌻 for   , 3 🌻 for 


• Start on whichever item demanded first

• Halt when either:

• both downstreams close

• run out of sunflowers


• Waste at most 4 sunflowers

🌻
🌻
🌻

???



Sunflower Processing Facility

• In: sunflowers

• Out: oil bottles   , packs of seeds


• 5 🌻 for   , 3 🌻 for 


• Start on whichever item demanded first

• Halt when either:

• both downstreams close

• run out of sunflowers


• Waste at most 4 sunflowers

🌻
🌻
🌻

Behavior depends on which 
downstream acts first (racing).

???
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• feed the input source into a queue

• start each consumer in a fiber and let them compete in pulling from queue

• obtain a lock to pull the respective number of sunflowers (3 or 5)

• notify the upstream when both consumer close using a CountdownLatch

Sunflower Processing Facility: Bad Idea
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def sunflowerProcessor: Source[Sunflower] -⚬ (Source[SeedsPack] |*| Source[OilBottle]) =  
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Sunflower Processing Facility
def sunflowerProcessor: Source[Sunflower] -⚬ (Source[SeedsPack] |*| Source[OilBottle]) =  

  rec { self => 

    λ { sunflowers => 

      producing { case seedsOut |*| oilOut => // give names to the outputs 

        // race the outputs by which one acts (i.e. pulls or closes) first 

        (selectBy(notifyAction, notifyAction) >>: (seedsOut |*| oilOut)) switch { 

          case Left(seedsOut |*| oilOut) => // seed output acted first 

            ??? 

          case Right(seedsOut |*| oilOut) => // oil output acted first 

            ??? 

        } 

      } 

    } 

  } 
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Sunflower Processing Facility
case Left(seedsOut |*| oilOut) => // seed output acted first 

  (fromChoice >>: seedsOut) switch { 

    case Left( ✔ ) => // seed output closing, still have sunflowers, oilOut 

      ??? 

    case Right(pullingSeeds) => // seed output pulling, still have sunflowers, oilOut 

      ??? 

  }



Sunflower Processing Facility
case Left(seedsOut |*| oilOut) => // seed output acted first 

  (fromChoice >>: seedsOut) switch { 

    case Left( ✔ ) => // seed output closing, still have sunflowers, oilOut 

      ??? 

    case Right(pullingSeeds) => // seed output pulling, still have sunflowers, oilOut 

        pull3(sunflowers) switch { 

          case Right(sunflower3 |*| sunflowers) => 

            ??? 

            

          case Left(   ✔  ) => // no more sunflowers 

            ??? 

        } 

  }
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case Left(seedsOut |*| oilOut) => // seed output acted first 

  (fromChoice >>: seedsOut) switch { 

    case Left( ✔ ) => // seed output closing, still have sunflowers, oilOut 

      ??? 

    case Right(pullingSeeds) => // seed output pulling, still have sunflowers, oilOut 

        pull3(sunflowers) switch { 

          case Right(sunflower3 |*| sunflowers) => 

            val seedsPack = roastSeedsAndPack(sunflower3) 

            val seedsPacks |*| oilBottles = self(sunflowers) 

            ??? 
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            ??? 

        } 
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Sunflower Processing Facility
case Left(seedsOut |*| oilOut) => // seed output acted first 

  (fromChoice >>: seedsOut) switch { 

    case Left( ✔ ) => // seed output closing, still have sunflowers, oilOut 

      ??? 

    case Right(pullingSeeds) => // seed output pulling, still have sunflowers, oilOut 

      (pullingSeeds |*| oilOut) := 

        pull3(sunflowers) switch { 

          case Right(sunflower3 |*| sunflowers) => 

            val seedsPack = roastSeedsAndPack(sunflower3) 

            val seedsPacks |*| oilBottles = self(sunflowers) 

            Polled.cons(seedsPack |*| seedsPacks) |*| oilBottles 

          case Left(+( ✔ )) => // no more sunflowers 

            Polled.empty( ✔ ) |*| Source.empty( ✔ ) 

        } 

  }



Sunflower Processing Facility
case Left(seedsOut |*| oilOut) => // seed output acted first 

  (fromChoice >>: seedsOut) switch { 

    case Left( ✔ ) => // seed output closing, still have sunflowers, oilOut 

      ??? 

    case Right(pullingSeeds) => // seed output pulling, still have sunflowers, oilOut 

      (pullingSeeds |*| oilOut) := 

        pull3(sunflowers) switch { 

          case Right(sunflower3 |*| sunflowers) => 

            val seedsPack = roastSeedsAndPack(sunflower3) 

            val seedsPacks |*| oilBottles = self(sunflowers) 

            Polled.cons(seedsPack |*| seedsPacks) |*| oilBottles 

          case Left(+( ✔ )) => // no more sunflowers 

            Polled.empty( ✔ ) |*| Source.empty( ✔ ) 

        } 

  }



Digital Library of Alexandria

• In: scroll IDs (ISBNs)

• Out: pages of all given scrolls, in order

• Use provided API to request a scroll by its ID

• returns a stream of scanned pages


• Fair use policy: max k concurrent connections

• Request profile:


• Use all k connections to prepare documents, 
transfer data sequentially

ISBN 316148412-0 
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ISBN 316148410-0
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}data transfer
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Digital Library of Alexandria

• In: scroll IDs (ISBNs)

• Out: pages of all given scrolls, in order

• Use provided API to request a scroll by its ID

• returns a stream of scanned pages


• Fair use policy: max k concurrent connections

• Request profile:


• Use all k connections to prepare documents, 
transfer data sequentially

ISBN 316148412-0 
ISBN 316148411-0 
ISBN 316148410-0

📄
📄

waiting while a robot picks up and scans the scroll

}data transfer

Non-trivial resource lifetimes

(overlapping, but not nested)
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def fetchScroll: (Connector |*| ISBN) -⚬ Source[📄] 

def downloadAll(k: Int): (Connector |*| Source[ISBN]) -⚬ Source[📄] = 

  mapWith(fetchScroll) // Source[Source[📄]] 
    > prefetch(k - 1)(discardPrefetched = Source.close) 
    > flatten

Digital Library of Alexandria

Correct 
Resource Safe  

Does not work in libs where Source / Stream is a “blueprint”
Stream[Stream[📄]] .prefetch(n) .flatten

• prefetches blueprints, does not start doc preparation
Stream[Stream[📄]] .flatten .prefetch(n)

• prefetches n pages of concatenation, instead of preparing n documents
Stream[ISBN] .mapAsync(n)(ISBN => IO[Stream[📄]])

• if IO action starts doc prep in background, who closes connection if Stream never consumed?



def fetchScroll: (Connector |*| ISBN) -⚬ Source[📄] 

def downloadAll(k: Int): (Connector |*| Source[ISBN]) -⚬ Source[📄] = 

  mapWith(fetchScroll) > prefetch(k - 1)(discardPrefetched = Source.close) > flatten

Digital Library of Alexandria

Why does it work in Libretto?
Source[📄] 

• not a blueprint

• phantom type

• interface of interaction (poll, close)

• running process on each sides


• A -⚬ Source[📄] is the blueprint


Resources 
• not tied to inflexible (nested) scopes

• release guaranteed by linearity

Connector Source[ISBN]

Source[📄]

Connector ISBN

Source[📄]

fetchScroll

Connector ISBN

Source[📄]

fetchScroll

Connector ISBN

Source[📄]

fetchScroll …
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Declarative or Expressive? Pick two!

Stream operators in Libretto are
safer and simpler than the alternatives.

(I might be biased, feel free to challenge.)

Summary



Streams in Libretto
Control Flow

proactive reactive

producer
Stream[A] 

= 
✔ ⨁ (✔ & (A ⨂ Stream[A]))

Source[A] 
= 

✔ & (✔ ⨁ (A ⨂ Source[A]))

consumer
Drain[A] 

= 
-[✔] ⨁ (-[✔] & (-[A] ⨂ Drain[A]))

Sink[A] 
= 

-[✔] & (-[✔] ⨁ (-[A] ⨂ Sink[A]))

Pa
yl

oa
d 

Fl
ow

⨁ 
&

& 
⨁

A

-[A]

-[Stream[A]] ~ Sink[A]

-[Source[A]] ~ Drain[A]
-⚬⚬-

✔

-[✔]



Bonus: Streams with Custom Terminator
Control Flow

proactive reactive

producer
StreamT[T,A] 

= 
T ⨁ (T & (A ⨂ StreamT[T,A]))

SourceT[T,A] 
= 

T & (T ⨁ (A ⨂ SourceT[T,A]))

consumer
DrainT[T,A] 

= 
-[T] ⨁ (-[T] & (-[A] ⨂ DrainT[T,A]))

SinkT[A] 
= 

-[T] & (-[T] ⨁ (-[A] ⨂ SinkT[T,A]))

Pa
yl

oa
d 

Fl
ow

⨁ 
&

& 
⨁

A

-[A]

T

-[T]

Example: API of a TV streaming service

Tv = ✔ & (ChannelName =⚬ SourceT[Tv,VideoFrame]) 

• ensures consuming at most 1 channel at a time

Gateway drug to 
session types



Thank you!

github.com/TomasMikula/libretto/


(includes runnable version of each shown example)

https://github.com/TomasMikula/libretto/

