
Custom Stream Operators
Made Safe And Simple

with Libretto

Tomas Mikula

Mar 24, 2023

Custom Stream Operators Made Safe and Simple

Custom Stream Operators Made Safe and Simple

Business
Logic

Custom Stream Operators Made Safe and Simple

Safe
high rejection rate of wrong programs
(hard to shoot ourselves in the foot)

Business
Logic

Custom Stream Operators Made Safe and Simple

Safe
high rejection rate of wrong programs
(hard to shoot ourselves in the foot)

Simple
low accidental complexity
(stay focused on business logic)

Business
Logic

Custom Stream Operators Made Safe and Simple

Safe
high rejection rate of wrong programs
(hard to shoot ourselves in the foot)

Simple
low accidental complexity
(stay focused on business logic)

Business
Logic

Stream

a sequence of elements produced and consumed gradually

Stream

a sequence of elements produced and consumed gradually

Control Flow

proactive reactive
(not to be confused with “Reactive Streams”)

producer
Reactive Streams Publisher

Akka Source

fs2.Stream
zio.stream.ZStream

libretto.stream.Source

consumer

Pa
yl

oa
d

Fl
ow

Stream

a sequence of elements produced and consumed gradually

Control Flow

proactive reactive
(not to be confused with “Reactive Streams”)

producer
Reactive Streams Publisher

Akka Source

fs2.Stream
zio.stream.ZStream

libretto.stream.Source

consumer

Pa
yl

oa
d

Fl
ow

Stream

a sequence of elements produced and consumed gradually

Control Flow

proactive reactive
(not to be confused with “Reactive Streams”)

producer
Reactive Streams Publisher

Akka Source

fs2.Stream
zio.stream.ZStream

libretto.stream.Source

consumer

Pa
yl

oa
d

Fl
ow

Stream

a sequence of elements produced and consumed gradually

Control Flow

proactive reactive
(not to be confused with “Reactive Streams”)

producer
Reactive Streams Publisher

Akka Source

fs2.Stream
zio.stream.ZStream

libretto.stream.Source

consumer

Pa
yl

oa
d

Fl
ow

Stream

a sequence of elements produced and consumed gradually

Control Flow

proactive reactive
(not to be confused with “Reactive Streams”)

producer
Reactive Streams Publisher

Akka Source

fs2.Stream
zio.stream.ZStream

libretto.stream.Source

consumer

Pa
yl

oa
d

Fl
ow

Libraries come with batteries included

map
(⇒) merge

partition
(⇒ |)

…
• nice to work with

• “declarative concurrency”

• can go a long way

• ideally, never need anything custom

Libraries come with batteries included

but what if we need something custom?

map
(⇒) merge

partition
(⇒ |)

…
• nice to work with

• “declarative concurrency”

• can go a long way

• ideally, never need anything custom

Libraries come with batteries included

but what if we need something custom?

map
(⇒) merge

partition
(⇒ |)

…
• nice to work with

• “declarative concurrency”

• can go a long way

• ideally, never need anything custom

promises

mutable
variables

queues

fibers

interruptions

illegal
state

scopes

locks

Libraries come with batteries included

but what if we need something custom?

map
(⇒) merge

partition
(⇒ |)

…
• nice to work with

• “declarative concurrency”

• can go a long way

• ideally, never need anything custom

promises

mutable
variables

queues

fibers

interruptions

illegal
state

scopes

locks

b
u

s
i

n

e

s

s

l
o

g

i

c

Libraries come with batteries included

but what if we need something custom?

map
(⇒) merge

partition
(⇒ |)

…
• nice to work with

• “declarative concurrency”

• can go a long way

• ideally, never need anything custom

promises

mutable
variables

queues

fibers

interruptions

illegal
state

scopes

locks

b
u

s
i

n

e

s

s

l
o

g

i

c

• All promises completed? Exactly once?

Libraries come with batteries included

but what if we need something custom?

map
(⇒) merge

partition
(⇒ |)

…
• nice to work with

• “declarative concurrency”

• can go a long way

• ideally, never need anything custom

promises

mutable
variables

queues

fibers

interruptions

illegal
state

scopes

locks

b
u

s
i

n

e

s

s

l
o

g

i

c

• All promises completed? Exactly once?
• Are we not losing elements?

Libraries come with batteries included

but what if we need something custom?

map
(⇒) merge

partition
(⇒ |)

…
• nice to work with

• “declarative concurrency”

• can go a long way

• ideally, never need anything custom

promises

mutable
variables

queues

fibers

interruptions

illegal
state

scopes

locks

b
u

s
i

n

e

s

s

l
o

g

i

c

• All promises completed? Exactly once?
• Are we not losing elements?
• Is this state really unreachable?

Libraries come with batteries included

but what if we need something custom?

map
(⇒) merge

partition
(⇒ |)

…
• nice to work with

• “declarative concurrency”

• can go a long way

• ideally, never need anything custom

promises

mutable
variables

queues

fibers

interruptions

illegal
state

scopes

locks

b
u

s
i

n

e

s

s

l
o

g

i

c

• All promises completed? Exactly once?
• Are we not losing elements?
• Is this state really unreachable?
• Are we not pulling from a closed queue?

Libraries come with batteries included

but what if we need something custom?

map
(⇒) merge

partition
(⇒ |)

…
• nice to work with

• “declarative concurrency”

• can go a long way

• ideally, never need anything custom

promises

mutable
variables

queues

fibers

interruptions

illegal
state

scopes

locks

b
u

s
i

n

e

s

s

l
o

g

i

c

• All promises completed? Exactly once?
• Are we not losing elements?
• Is this state really unreachable?
• Are we not pulling from a closed queue?
• Are var updates noticed by the other side?

Libraries come with batteries included

but what if we need something custom?

map
(⇒) merge

partition
(⇒ |)

…
• nice to work with

• “declarative concurrency”

• can go a long way

• ideally, never need anything custom

promises

mutable
variables

queues

fibers

interruptions

illegal
state

scopes

locks

b
u

s
i

n

e

s

s

l
o

g

i

c

• All promises completed? Exactly once?
• Are we not losing elements?
• Is this state really unreachable?
• Are we not pulling from a closed queue?
• Are var updates noticed by the other side?
• What if the fiber gets cancelled?

Libraries come with batteries included

but what if we need something custom?

map
(⇒) merge

partition
(⇒ |)

…
• nice to work with

• “declarative concurrency”

• can go a long way

• ideally, never need anything custom

promises

mutable
variables

queues

fibers

interruptions

illegal
state

scopes

locks

b
u

s
i

n

e

s

s

l
o

g

i

c

• All promises completed? Exactly once?
• Are we not losing elements?
• Is this state really unreachable?
• Are we not pulling from a closed queue?
• Are var updates noticed by the other side?
• What if the fiber gets cancelled?
• Is this resource still alive?

Libraries come with batteries included

but what if we need something custom?

map
(⇒) merge

partition
(⇒ |)

…
• nice to work with

• “declarative concurrency”

• can go a long way

• ideally, never need anything custom

promises

mutable
variables

queues

fibers

interruptions

illegal
state

scopes

locks

b
u

s
i

n

e

s

s

l
o

g

i

c

• All promises completed? Exactly once?
• Are we not losing elements?
• Is this state really unreachable?
• Are we not pulling from a closed queue?
• Are var updates noticed by the other side?
• What if the fiber gets cancelled?
• Is this resource still alive?

…

Libraries come with batteries included

but what if we need something custom?

map
(⇒) merge

partition
(⇒ |)

…
• nice to work with

• “declarative concurrency”

• can go a long way

• ideally, never need anything custom

promises

mutable
variables

queues

fibers

interruptions

illegal
state

scopes

locks

b
u

s
i

n

e

s

s

l
o

g

i

c

• All promises completed? Exactly once?
• Are we not losing elements?
• Is this state really unreachable?
• Are we not pulling from a closed queue?
• Are var updates noticed by the other side?
• What if the fiber gets cancelled?
• Is this resource still alive?

…

neither Safe

nor Simple

The Libretto Way
by example

Packaging Dog Presents

• In: toys, bones, biscuits

• Out: packages of either

• 1 toy, 1 large bone, 3 biscuits

• 1 toy, 1 small bone, 5 biscuits

• Halt when either:

• no more downstream demand

• any upstream runs out of items

• Discard at most 1 toy, 1 bone, 5 biscuits

🦴
🦴

🦴

🎁
🎁

???

🍪
🍪
🍪

Packaging Dog Presents

• In: toys, bones, biscuits

• Out: packages of either

• 1 toy, 1 large bone, 3 biscuits

• 1 toy, 1 small bone, 5 biscuits

• Halt when either:

• no more downstream demand

• any upstream runs out of items

• Discard at most 1 toy, 1 bone, 5 biscuits

🦴
🦴

🦴

🎁
🎁

Pulling behavior depends on previously
pulled values (size of the pulled bone).

???

🍪
🍪
🍪

Packaging Dog Presents

???

Source[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

???

Source.fromChoice
Source[]🎁

✔ & Polled[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

???

Source.fromChoice
Source[]🎁

✔ & Polled[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

???

Source[]🎁

✔ & Polled[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

choice

Source[]🎁

✔ & Polled[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

???

Src[] ⨂ Src[] ⨂ Src[]🦴 🍪

???

Polled[]🎁✔

Src[] ⨂ Src[] ⨂ Src[]🦴 🍪
??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

???

Src[] ⨂ Src[] ⨂ Src[]🦴 🍪

???

Polled[]🎁✔

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

Src[] ⨂ Src[] ⨂ Src[]🦴 🍪
??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

??? ???

Polled[]🎁✔

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

Src[]🍪Src[]🦴Src[] Src[] ⨂ Src[] ⨂ Src[]🦴 🍪
??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

???

???

Polled[]🎁✔

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

close close close

Src[]🍪Src[]🦴Src[]

✔ ✔ ✔

Src[] ⨂ Src[] ⨂ Src[]🦴 🍪
??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

???

Polled[]🎁

???

✔

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

✔ ✔ ✔

Src[] ⨂ Src[] ⨂ Src[]🦴 🍪
??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

???

Polled[]🎁

joinAll

✔

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

✔ ✔ ✔

Src[] ⨂ Src[] ⨂ Src[]🦴 🍪
??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

???

Polled[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

Src[] ⨂ Src[] ⨂ Src[]🦴 🍪
??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

???

Src[] ⨂ Src[] ⨂ Src[]🦴 🍪

Polled[]🎁

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

???

Src[] Src[] ⨂ Src[]🦴 🍪

Polled[]🎁

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

???

Src[] Src[] ⨂ Src[]🦴 🍪

Polled[]🎁

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

???

poll
Src[] Src[] ⨂ Src[]🦴 🍪

✔ ⨁ (⨂ Src[])

Polled[]🎁

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

???

poll
Src[]

id
Src[] ⨂ Src[]🦴 🍪

✔ ⨁ (⨂ Src[]) Src[] ⨂ Src[]🦴 🍪

Polled[]🎁

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

???

✔ ⨁ (⨂ Src[]) Src[] ⨂ Src[]🦴 🍪

Polled[]🎁

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

???

✔ ⨁ (⨂ Src[]) Src[] ⨂ Src[]🦴 🍪

Polled[]🎁

(✔ ⨂ Src[] ⨂ Src[]) ⨁ (⨂ Src[] ⨂ Src[] ⨂ Src[])🦴 🦴🍪 🍪

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

???

Polled[]🎁

(✔ ⨂ Src[] ⨂ Src[]) ⨁ (⨂ Src[] ⨂ Src[] ⨂ Src[])🦴 🦴🍪 🍪

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

either

???

Polled[]🎁

???

✔ ⨂ Src[] ⨂ Src[]🦴 🍪 ⨂ Src[] ⨂ Src[] ⨂ Src[]🦴 🍪

Polled[]🎁

(✔ ⨂ Src[] ⨂ Src[]) ⨁ (⨂ Src[] ⨂ Src[] ⨂ Src[])🦴 🦴🍪 🍪

Polled[]🎁

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

??? ???

✔ ⨂ Src[] ⨂ Src[]🦴 🍪 ⨂ Src[] ⨂ Src[] ⨂ Src[]🦴 🍪

Polled[]🎁Polled[]🎁

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

??? ???

 ⨂ Src[] ⨂ Src[] ⨂ Src[]🦴 🍪

Polled[]🎁

✔ Src[]🦴 Src[]🍪

Polled[]🎁

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

???

 ⨂ Src[] ⨂ Src[] ⨂ Src[]🦴 🍪

Polled[]🎁

???

id close close

✔ Src[]🦴 Src[]🍪

✔ ✔ ✔

Polled[]🎁

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

???

 ⨂ Src[] ⨂ Src[] ⨂ Src[]🦴 🍪

Polled[]🎁

???

✔ ✔ ✔

Polled[]🎁

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

???

 ⨂ Src[] ⨂ Src[] ⨂ Src[]🦴 🍪

Polled[]🎁
???

joinAll
✔ ✔ ✔

✔

Polled[]🎁

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

???

 ⨂ Src[] ⨂ Src[] ⨂ Src[]🦴 🍪

Polled[]🎁
???
✔

Polled[]🎁

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

???

 ⨂ Src[] ⨂ Src[] ⨂ Src[]🦴 🍪

Polled[]🎁
Polled.empty

✔

Polled[]🎁

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

???

 ⨂ Src[] ⨂ Src[] ⨂ Src[]🦴 🍪

Polled[]🎁

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

 ⨂ Src[] ⨂ Src[] ⨂ Src[]🦴 🍪

???

Polled[]🎁

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

Src[] ⨂ Src[] ⨂ Src[]🦴 🍪

???

Polled[]🎁

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

...
Src[] ⨂ Src[] ⨂ Src[]🦴 🍪

Src[] ⨂ Src[] ⨂ Src[]🦴 🍪🦴

???

Polled[]🎁

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

Src[] ⨂ Src[] ⨂ Src[]🦴 🍪🦴

???

Polled[]🎁

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

Src[] ⨂ Src[] ⨂ Src[]🦴 🍪

classifySize

🦴

🦴 🦴⨁

???

Polled[]🎁

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

Src[] ⨂ Src[] ⨂ Src[]🦴 🍪

classifySize

🦴

🦴 🦴⨁ Src[] ⨂ Src[] ⨂ Src[]🦴 🍪

id id

???

Polled[]🎁

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

🦴 🦴⨁ Src[] ⨂ Src[] ⨂ Src[]🦴 🍪

???

Polled[]🎁

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

🦴 🦴⨁ Src[] ⨂ Src[] ⨂ Src[]🦴 🍪

???

Polled[]🎁

 ⨂ ⨂ [] ⨂ [] ⨂ [] ⨁ ⨂ ⨂ [] ⨂ [] ⨂ []🦴 🍪🦴 🦴 🦴 🍪

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

???

Polled[]🎁

 ⨂ ⨂ [] ⨂ [] ⨂ [] ⨁ ⨂ ⨂ [] ⨂ [] ⨂ []🦴 🍪🦴 🦴 🦴 🍪

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

???

Polled[]🎁

 ⨂ ⨂ [] ⨂ [] ⨂ [] ⨁ ⨂ ⨂ [] ⨂ [] ⨂ []🦴 🍪🦴 🦴 🦴 🍪

???
Polled[]🎁

 ⨂ ⨂ [] ⨂ [] ⨂ []🦴 🍪🦴

either

Polled[]🎁

 ⨂ ⨂ [] ⨂ [] ⨂ []🦴 🦴 🍪

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

??? ???
Polled[]🎁

 ⨂ ⨂ [] ⨂ [] ⨂ []🦴 🍪🦴

Polled[]🎁

 ⨂ ⨂ [] ⨂ [] ⨂ []🦴 🦴 🍪

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

???
Polled[]🎁

 ⨂ ⨂ [] ⨂ [] ⨂ []🦴 🍪🦴

/* will be analogous */

Polled[]🎁

 ⨂ ⨂ [] ⨂ [] ⨂ []🦴 🦴 🍪

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

???
Polled[]🎁

 ⨂ ⨂ [] ⨂ [] ⨂ []🦴 🍪🦴

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

???

 ⨂ ⨂ Src[] ⨂ Src[] ⨂ Src[]🦴 🍪🦴

Polled[]🎁

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

???

Src[] ⨂ Src[] ⨂ Src[]🦴 🍪 ⨂ 🦴

Polled[]🎁

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

...
Src[] ⨂ Src[] ⨂ Src[]🦴 🍪 ⨂ 🦴

???

Polled[]🎁

 ⨂ ⨂ 🦴 🍪🍪🍪 Src[] ⨂ Src[] ⨂ Src[]🦴 🍪

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

???

Polled[]🎁

 ⨂ ⨂ 🦴 🍪🍪🍪 Src[] ⨂ Src[] ⨂ Src[]🦴 🍪

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

???

Polled.cons
Polled[]🎁

🎁

 ⨂ ⨂ 🦴 🍪🍪🍪 Src[] ⨂ Src[] ⨂ Src[]🦴 🍪

Source[]🎁

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

🎁

 ⨂ ⨂ 🦴 🍪🍪🍪

???

Src[] ⨂ Src[] ⨂ Src[]🦴 🍪

Source[]🎁

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

wrap

🎁

 ⨂ ⨂ 🦴 🍪🍪🍪

???

Src[] ⨂ Src[] ⨂ Src[]🦴 🍪

Source[]🎁

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

???

Src[] ⨂ Src[] ⨂ Src[]🦴 🍪

Source[]🎁

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

???

self

Src[] ⨂ Src[] ⨂ Src[]🦴 🍪

Source[]🎁

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

self

self

Src[] ⨂ Src[] ⨂ Src[]🦴 🍪

Source[]🎁

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents

Source[]🎁

Source[] ⨂ Source[] ⨂ Source[]🦴 🍪

??? hole to be filled

to be consumed

to be produced

⨂ concurrent pair

& consumer choice

⨁ producer choice

✔ Done signal

Polled[A] requested

next elem ✔ ⨁ (A ⨂ Source[A])

Src[A] abbr. Source[A]

[A] abbr. Source[A]

Packaging Dog Presents
def packagingLine: (Source[Toy] |*| Source[Bone] |*| Source[Biscuit]) -⚬ Source[Present] =

 ???

Packaging Dog Presents
def packagingLine: (Source[Toy] |*| Source[Bone] |*| Source[Biscuit]) -⚬ Source[Present] =

 ???

Packaging Dog Presents
def packagingLine: (Source[Toy] |*| Source[Bone] |*| Source[Biscuit]) -⚬ Source[Present] =

 rec { self =>

 ???

 }

Packaging Dog Presents
def packagingLine: (Source[Toy] |*| Source[Bone] |*| Source[Biscuit]) -⚬ Source[Present] =

 rec { self =>

 Source.from(

 onClose =

 λ { case (toys |*| bones |*| biscuits) =>

 ??? : $[✔]

 },

 onPoll =

 λ { case (toys |*| bones |*| biscuits) =>

 ??? : $[Polled[Present]]

 },

)

 }

Packaging Dog Presents
def packagingLine: (Source[Toy] |*| Source[Bone] |*| Source[Biscuit]) -⚬ Source[Present] =

 rec { self =>

 Source.from(

 onClose =

 λ { case (toys |*| bones |*| biscuits) =>

 ??? : $[✔]

 },

 onPoll =

 λ { case (toys |*| bones |*| biscuits) =>

 ??? : $[Polled[Present]]

 },

)

 }

Packaging Dog Presents
def packagingLine: (Source[Toy] |*| Source[Bone] |*| Source[Biscuit]) -⚬ Source[Present] =

 rec { self =>

 Source.from(

 onClose =

 λ { case (toys |*| bones |*| biscuits) =>

 joinAll(close(toys), close(bones), close(biscuits))

 },

 onPoll =

 λ { case (toys |*| bones |*| biscuits) =>

 ??? : $[Polled[Present]]

 },

)

 }

Packaging Dog Presents
λ { case (toys |*| bones |*| biscuits) =>

 ??? : $[Polled[Present]]

}

Packaging Dog Presents
λ { case (toys |*| bones |*| biscuits) =>

 poll(toys) switch {

 case Left(✔) => // no toys left, still have bones and biscuits

 ??? : $[Polled[Present]]

 case Right(toy |*| toys) => // got a toy, still have bones and biscuits

 ??? : $[Polled[Present]]

 }

}

Packaging Dog Presents
λ { case (toys |*| bones |*| biscuits) =>

 poll(toys) switch {

 case Left(✔) => // no toys left

 Polled.empty(joinAll(✔ , close(bones), close(biscuits)))

 case Right(toy |*| toys) => // got a toy, still have bones and biscuits

 ??? : $[Polled[Present]]

 }

}

Packaging Dog Presents
λ { case (toys |*| bones |*| biscuits) =>

 poll(toys) switch {

 case Left(✔) => // no toys left

 Polled.empty(joinAll(✔ , close(bones), close(biscuits)))

 case Right(toy |*| toys) => // got a toy, still have biscuits

 poll(bones) switch {

 case Left(✔) => // no bones left

 Polled.empty(joinAll(✔ , neglect(toy), close(toys), close(biscuits)))

 case Right(bone |*| bones) => // got a bone, still have toy, toys, biscuits

 ??? : $[Polled[Present]]

 }

 }

}

Packaging Dog Presents
case Right(bone |*| bones) => // got a bone, still have toy, toys, biscuits

 ??? : $[Polled[Present]]

Packaging Dog Presents
case Right(bone |*| bones) => // got a bone

 Bone.classifySize(bone) switch {

 case Left(largeBone) => // got a large bone

 pullThreeBiscuits(biscuits) switch {

 case Left(✔) => // not enough biscuits

 Polled.empty(joinAll(✔ , neglect(toy), neglect(largeBone), close(toys), close(bones)))

 case Right(biscuit3 |*| biscuits) => // got three biscuits

 Polled.cons(

 wrap(toy, largeBone, biscuit3) |*|

 self(toys |*| bones |*| biscuits)

)

 }

 case Right(smallBone) => // got a small bone

 // analogous

Packaging Dog Presents
case Right(bone |*| bones) => // got a bone

 Bone.classifySize(bone) switch {

 case Left(largeBone) => // got a large bone

 pullThreeBiscuits(biscuits) switch {

 case Left(✔) => // not enough biscuits

 Polled.empty(joinAll(✔ , neglect(toy), neglect(largeBone), close(toys), close(bones)))

 case Right(biscuit3 |*| biscuits) => // got three biscuits

 Polled.cons(

 wrap(toy, largeBone, biscuit3) |*|

 self(toys |*| bones |*| biscuits)

)

 }

 case Right(smallBone) => // got a small bone

 // analogous

Packaging Dog Presents
case Right(bone |*| bones) => // got a bone

 Bone.classifySize(bone) switch {

 case Left(largeBone) => // got a large bone

 pullThreeBiscuits(biscuits) switch {

 case Left(✔) => // not enough biscuits

 Polled.empty(joinAll(✔ , neglect(toy), neglect(largeBone), close(toys), close(bones)))

 case Right(biscuit3 |*| biscuits) => // got three biscuits

 Polled.cons(

 wrap(toy, largeBone, biscuit3) |*|

 self(toys |*| bones |*| biscuits)

)

 }

 case Right(smallBone) => // got a small bone

 // analogous

Unused variable largeBone

Packaging Dog Presents
case Right(bone |*| bones) => // got a bone

 Bone.classifySize(bone) switch {

 case Left(largeBone) => // got a large bone

 pullThreeBiscuits(biscuits) switch {

 case Left(✔) => // not enough biscuits

 Polled.empty(joinAll(✔ , neglect(toy), neglect(largeBone), close(toys), close(bones)))

 case Right(biscuit3 |*| biscuits) => // got three biscuits

 Polled.cons(

 wrap(toy, largeBone, biscuit3) |*|

 self(toys |*| bones |*| biscuits)

)

 }

 case Right(smallBone) => // got a small bone

 // analogous

close(toys),

Unused variable largeBone

Overused variable toys

Packaging Dog Presents
case Right(bone |*| bones) => // got a bone

 Bone.classifySize(bone) switch {

 case Left(largeBone) => // got a large bone

 pullThreeBiscuits(biscuits) switch {

 case Left(✔) => // not enough biscuits

 Polled.empty(joinAll(✔ , neglect(toy), neglect(largeBone), close(toys), close(bones)))

 case Right(biscuit3 |*| biscuits) => // got three biscuits

 Polled.cons(

 wrap(toy, largeBone, biscuit3) |*|

 self(toys |*| bones |*| biscuits)

)

 }

 case Right(smallBone) => // got a small bone

 // analogous

close(toys),

Unused variable largeBone

Overused variable toys

Not properly wired ⇒ unrepresentable

• exception from the surrounding λ

• assembly-time error

Packaging Dog Presents
case Right(bone |*| bones) => // got a bone

 Bone.classifySize(bone) switch {

 case Left(largeBone) => // got a large bone

 pullThreeBiscuits(biscuits) switch {

 case Left(✔) => // not enough biscuits

 Polled.empty(joinAll(✔ , neglect(toy), neglect(largeBone), close(toys), close(bones)))

 case Right(biscuit3 |*| biscuits) => // got three biscuits

 Polled.cons(

 wrap(toy, largeBone, biscuit3) |*|

 self(toys |*| bones |*| biscuits)

)

 }

 case Right(smallBone) => // got a small bone

 // analogous

close(toys),

Unused variable largeBone

Overused variable toys

Not properly wired ⇒ unrepresentable

• exception from the surrounding λ

• assembly-time error
test("packagingLine") { packagingLine }

Packaging Dog Presents: Alternatives

FS2’s Stream.pull

ZIO’s ZStream.toPull

Packaging Dog Presents: Alternatives

FS2’s Stream.pull

ZIO’s ZStream.toPull

• much less safe

• slightly more accidental complexity

Packaging Dog Presents: Alternatives

Integrating with ZIO Streams
Libretto
def packagingLine: (Source[Toy] |*| Source[Bone] |*| Source[Biscuit]) -⚬ Source[Present]

Integrating with ZIO Streams
Libretto
def packagingLine: (Source[Toy] |*| Source[Bone] |*| Source[Biscuit]) -⚬ Source[Present]

ZIO
def go(

 toys: UStream[Toy],

 bones: UStream[Bone],

 biscuits: UStream[Biscuit],

): ZIO[Scope, Nothing, UStream[Present]] =

Integrating with ZIO Streams
Libretto
def packagingLine: (Source[Toy] |*| Source[Bone] |*| Source[Biscuit]) -⚬ Source[Present]

ZIO
def go(

 toys: UStream[Toy],

 bones: UStream[Bone],

 biscuits: UStream[Biscuit],

): ZIO[Scope, Nothing, UStream[Present]] =

 (toys.asSource |*| bones.asSource |*| biscuits.asSource)

 .through_(packagingLine)

 .map(_.zstream)

Sunflower Processing Facility

• In: sunflowers

• Out: oil bottles , packs of seeds

• 5 🌻 for , 3 🌻 for

• Start on whichever item demanded first

• Halt when either:

• both downstreams close

• run out of sunflowers

• Waste at most 4 sunflowers

🌻
🌻
🌻

???

Sunflower Processing Facility

• In: sunflowers

• Out: oil bottles , packs of seeds

• 5 🌻 for , 3 🌻 for

• Start on whichever item demanded first

• Halt when either:

• both downstreams close

• run out of sunflowers

• Waste at most 4 sunflowers

🌻
🌻
🌻

Behavior depends on which
downstream acts first (racing).

???

Sunflower Processing Facility: Idea

Sunflower Processing Facility: Idea

• feed the input source into a queue

Sunflower Processing Facility: Idea

• feed the input source into a queue

• start each consumer in a fiber and let them compete in pulling from queue

Sunflower Processing Facility: Idea

• feed the input source into a queue

• start each consumer in a fiber and let them compete in pulling from queue

• obtain a lock to pull the respective number of sunflowers (3 or 5)

Sunflower Processing Facility: Idea

• feed the input source into a queue

• start each consumer in a fiber and let them compete in pulling from queue

• obtain a lock to pull the respective number of sunflowers (3 or 5)

• notify the upstream when both consumer close using a CountdownLatch

• feed the input source into a queue

• start each consumer in a fiber and let them compete in pulling from queue

• obtain a lock to pull the respective number of sunflowers (3 or 5)

• notify the upstream when both consumer close using a CountdownLatch

Sunflower Processing Facility: Bad Idea

Sunflower Processing Facility
def sunflowerProcessor: Source[Sunflower] -⚬ (Source[SeedsPack] |*| Source[OilBottle]) =

 rec { self =>

 λ { sunflowers =>

 producing { case seedsOut |*| oilOut => // give names to the outputs

 ???

 }

 }

 }

Sunflower Processing Facility
def sunflowerProcessor: Source[Sunflower] -⚬ (Source[SeedsPack] |*| Source[OilBottle]) =

 rec { self =>

 λ { sunflowers =>

 producing { case seedsOut |*| oilOut => // give names to the outputs

 ???

 }

 }

 }

Sunflower Processing Facility
def sunflowerProcessor: Source[Sunflower] -⚬ (Source[SeedsPack] |*| Source[OilBottle]) =

 rec { self =>

 λ { sunflowers =>

 producing { case seedsOut |*| oilOut => // give names to the outputs

 ???

 }

 }

 }

Sunflower Processing Facility
def sunflowerProcessor: Source[Sunflower] -⚬ (Source[SeedsPack] |*| Source[OilBottle]) =

 rec { self =>

 λ { sunflowers =>

 producing { case seedsOut |*| oilOut => // give names to the outputs

 // race the outputs by which one acts (i.e. pulls or closes) first

 (selectBy(notifyAction, notifyAction) >>: (seedsOut |*| oilOut)) switch {

 case Left(seedsOut |*| oilOut) => // seed output acted first

 ???

 case Right(seedsOut |*| oilOut) => // oil output acted first

 ???

 }

 }

 }

 }

Sunflower Processing Facility
case Left(seedsOut |*| oilOut) => // seed output acted first, still have sunflowers

 ???

Sunflower Processing Facility
case Left(seedsOut |*| oilOut) => // seed output acted first

 (fromChoice >>: seedsOut) switch {

 case Left(✔) => // seed output closing, still have sunflowers, oilOut

 ???

 case Right(pullingSeeds) => // seed output pulling, still have sunflowers, oilOut

 ???

 }

Sunflower Processing Facility
case Left(seedsOut |*| oilOut) => // seed output acted first

 (fromChoice >>: seedsOut) switch {

 case Left(✔) => // seed output closing, still have sunflowers, oilOut

 ???

 case Right(pullingSeeds) => // seed output pulling, still have sunflowers, oilOut

 pull3(sunflowers) switch {

 case Right(sunflower3 |*| sunflowers) =>

 ???

 case Left(✔) => // no more sunflowers

 ???

 }

 }

Sunflower Processing Facility
case Left(seedsOut |*| oilOut) => // seed output acted first

 (fromChoice >>: seedsOut) switch {

 case Left(✔) => // seed output closing, still have sunflowers, oilOut

 ???

 case Right(pullingSeeds) => // seed output pulling, still have sunflowers, oilOut

 pull3(sunflowers) switch {

 case Right(sunflower3 |*| sunflowers) =>

 val seedsPack = roastSeedsAndPack(sunflower3)

 val seedsPacks |*| oilBottles = self(sunflowers)

 ???

 case Left(✔) => // no more sunflowers

 ???

 }

 }

Sunflower Processing Facility
case Left(seedsOut |*| oilOut) => // seed output acted first

 (fromChoice >>: seedsOut) switch {

 case Left(✔) => // seed output closing, still have sunflowers, oilOut

 ???

 case Right(pullingSeeds) => // seed output pulling, still have sunflowers, oilOut

 (pullingSeeds |*| oilOut) :=

 pull3(sunflowers) switch {

 case Right(sunflower3 |*| sunflowers) =>

 val seedsPack = roastSeedsAndPack(sunflower3)

 val seedsPacks |*| oilBottles = self(sunflowers)

 Polled.cons(seedsPack |*| seedsPacks) |*| oilBottles

 case Left(+(✔)) => // no more sunflowers

 Polled.empty(✔) |*| Source.empty(✔)

 }

 }

Sunflower Processing Facility
case Left(seedsOut |*| oilOut) => // seed output acted first

 (fromChoice >>: seedsOut) switch {

 case Left(✔) => // seed output closing, still have sunflowers, oilOut

 ???

 case Right(pullingSeeds) => // seed output pulling, still have sunflowers, oilOut

 (pullingSeeds |*| oilOut) :=

 pull3(sunflowers) switch {

 case Right(sunflower3 |*| sunflowers) =>

 val seedsPack = roastSeedsAndPack(sunflower3)

 val seedsPacks |*| oilBottles = self(sunflowers)

 Polled.cons(seedsPack |*| seedsPacks) |*| oilBottles

 case Left(+(✔)) => // no more sunflowers

 Polled.empty(✔) |*| Source.empty(✔)

 }

 }

Digital Library of Alexandria

• In: scroll IDs (ISBNs)

• Out: pages of all given scrolls, in order

• Use provided API to request a scroll by its ID

• returns a stream of scanned pages

• Fair use policy: max k concurrent connections

• Request profile:

• Use all k connections to prepare documents,
transfer data sequentially

ISBN 316148412-0
ISBN 316148411-0
ISBN 316148410-0

📄
📄

waiting while a robot picks up and scans the scroll

}data transfer

Digital Library of Alexandria

• In: scroll IDs (ISBNs)

• Out: pages of all given scrolls, in order

• Use provided API to request a scroll by its ID

• returns a stream of scanned pages

• Fair use policy: max k concurrent connections

• Request profile:

• Use all k connections to prepare documents,
transfer data sequentially

ISBN 316148412-0
ISBN 316148411-0
ISBN 316148410-0

📄
📄

waiting while a robot picks up and scans the scroll

}data transfer

Digital Library of Alexandria

• In: scroll IDs (ISBNs)

• Out: pages of all given scrolls, in order

• Use provided API to request a scroll by its ID

• returns a stream of scanned pages

• Fair use policy: max k concurrent connections

• Request profile:

• Use all k connections to prepare documents,
transfer data sequentially

ISBN 316148412-0
ISBN 316148411-0
ISBN 316148410-0

📄
📄

waiting while a robot picks up and scans the scroll

}data transfer

Digital Library of Alexandria

• In: scroll IDs (ISBNs)

• Out: pages of all given scrolls, in order

• Use provided API to request a scroll by its ID

• returns a stream of scanned pages

• Fair use policy: max k concurrent connections

• Request profile:

• Use all k connections to prepare documents,
transfer data sequentially

ISBN 316148412-0
ISBN 316148411-0
ISBN 316148410-0

📄
📄

waiting while a robot picks up and scans the scroll

}data transfer

Digital Library of Alexandria

• In: scroll IDs (ISBNs)

• Out: pages of all given scrolls, in order

• Use provided API to request a scroll by its ID

• returns a stream of scanned pages

• Fair use policy: max k concurrent connections

• Request profile:

• Use all k connections to prepare documents,
transfer data sequentially

ISBN 316148412-0
ISBN 316148411-0
ISBN 316148410-0

📄
📄

waiting while a robot picks up and scans the scroll

}data transfer

Digital Library of Alexandria

• In: scroll IDs (ISBNs)

• Out: pages of all given scrolls, in order

• Use provided API to request a scroll by its ID

• returns a stream of scanned pages

• Fair use policy: max k concurrent connections

• Request profile:

• Use all k connections to prepare documents,
transfer data sequentially

ISBN 316148412-0
ISBN 316148411-0
ISBN 316148410-0

📄
📄

waiting while a robot picks up and scans the scroll

}data transfer

Digital Library of Alexandria

• In: scroll IDs (ISBNs)

• Out: pages of all given scrolls, in order

• Use provided API to request a scroll by its ID

• returns a stream of scanned pages

• Fair use policy: max k concurrent connections

• Request profile:

• Use all k connections to prepare documents,
transfer data sequentially

ISBN 316148412-0
ISBN 316148411-0
ISBN 316148410-0

📄
📄

waiting while a robot picks up and scans the scroll

}data transfer

Non-trivial resource lifetimes

(overlapping, but not nested)

Digital Library of Alexandria

// Provided.

// Opens a connection that is closed when the resulting Source is closed.

def fetchScroll: (Connector |*| ISBN) -⚬ Source[📄]

Digital Library of Alexandria

// Provided.

// Opens a connection that is closed when the resulting Source is closed.

def fetchScroll: (Connector |*| ISBN) -⚬ Source[📄]

def downloadAll(k: Int): (Connector |*| Source[ISBN]) -⚬ Source[📄] =

Digital Library of Alexandria

// Provided.

// Opens a connection that is closed when the resulting Source is closed.

def fetchScroll: (Connector |*| ISBN) -⚬ Source[📄]

def downloadAll(k: Int): (Connector |*| Source[ISBN]) -⚬ Source[📄] =

mapWith(fetchScroll) // Source[Source[📄]]

Digital Library of Alexandria

// Provided.

// Opens a connection that is closed when the resulting Source is closed.

def fetchScroll: (Connector |*| ISBN) -⚬ Source[📄]

def downloadAll(k: Int): (Connector |*| Source[ISBN]) -⚬ Source[📄] =

mapWith(fetchScroll) // Source[Source[📄]]

> prefetch(k - 1)(discardPrefetched = Source.close)

Digital Library of Alexandria

// Provided.

// Opens a connection that is closed when the resulting Source is closed.

def fetchScroll: (Connector |*| ISBN) -⚬ Source[📄]

def downloadAll(k: Int): (Connector |*| Source[ISBN]) -⚬ Source[📄] =

 mapWith(fetchScroll) // Source[Source[📄]]

 > prefetch(k - 1)(discardPrefetched = Source.close)
 > flatten

Digital Library of Alexandria

// Provided.

// Opens a connection that is closed when the resulting Source is closed.

def fetchScroll: (Connector |*| ISBN) -⚬ Source[📄]

def downloadAll(k: Int): (Connector |*| Source[ISBN]) -⚬ Source[📄] =

 mapWith(fetchScroll) // Source[Source[📄]]

 > prefetch(k - 1)(discardPrefetched = Source.close)
 > flatten

Digital Library of Alexandria

Correct
Resource Safe

def fetchScroll: (Connector |*| ISBN) -⚬ Source[📄]

def downloadAll(k: Int): (Connector |*| Source[ISBN]) -⚬ Source[📄] =

 mapWith(fetchScroll) // Source[Source[📄]]
 > prefetch(k - 1)(discardPrefetched = Source.close)
 > flatten

Digital Library of Alexandria

Correct
Resource Safe

Does not work in libs where Source / Stream is a “blueprint”

def fetchScroll: (Connector |*| ISBN) -⚬ Source[📄]

def downloadAll(k: Int): (Connector |*| Source[ISBN]) -⚬ Source[📄] =

 mapWith(fetchScroll) // Source[Source[📄]]
 > prefetch(k - 1)(discardPrefetched = Source.close)
 > flatten

Digital Library of Alexandria

Correct
Resource Safe

Does not work in libs where Source / Stream is a “blueprint”
Stream[Stream[📄]] .prefetch(n) .flatten

• prefetches blueprints, does not start doc preparation

def fetchScroll: (Connector |*| ISBN) -⚬ Source[📄]

def downloadAll(k: Int): (Connector |*| Source[ISBN]) -⚬ Source[📄] =

 mapWith(fetchScroll) // Source[Source[📄]]
 > prefetch(k - 1)(discardPrefetched = Source.close)
 > flatten

Digital Library of Alexandria

Correct
Resource Safe

Does not work in libs where Source / Stream is a “blueprint”
Stream[Stream[📄]] .prefetch(n) .flatten

• prefetches blueprints, does not start doc preparation
Stream[Stream[📄]] .flatten .prefetch(n)

• prefetches n pages of concatenation, instead of preparing n documents

def fetchScroll: (Connector |*| ISBN) -⚬ Source[📄]

def downloadAll(k: Int): (Connector |*| Source[ISBN]) -⚬ Source[📄] =

 mapWith(fetchScroll) // Source[Source[📄]]
 > prefetch(k - 1)(discardPrefetched = Source.close)
 > flatten

Digital Library of Alexandria

Correct
Resource Safe

Does not work in libs where Source / Stream is a “blueprint”
Stream[Stream[📄]] .prefetch(n) .flatten

• prefetches blueprints, does not start doc preparation
Stream[Stream[📄]] .flatten .prefetch(n)

• prefetches n pages of concatenation, instead of preparing n documents
Stream[ISBN] .mapAsync(n)(ISBN => IO[Stream[📄]])

• if IO action starts doc prep in background, who closes connection if Stream never consumed?

def fetchScroll: (Connector |*| ISBN) -⚬ Source[📄]

def downloadAll(k: Int): (Connector |*| Source[ISBN]) -⚬ Source[📄] =

 mapWith(fetchScroll) > prefetch(k - 1)(discardPrefetched = Source.close) > flatten

Digital Library of Alexandria

Why does it work in Libretto?
Source[📄]

• not a blueprint

• phantom type

• interface of interaction (poll, close)

• running process on each sides

• A -⚬ Source[📄] is the blueprint

Resources
• not tied to inflexible (nested) scopes

• release guaranteed by linearity

Connector Source[ISBN]

Source[📄]

Connector ISBN

Source[📄]

fetchScroll

Connector ISBN

Source[📄]

fetchScroll

Connector ISBN

Source[📄]

fetchScroll …

Summary

Declarative or Expressive? Pick two!

Summary

Declarative or Expressive? Pick two!

Stream operators in Libretto are
safer and simpler than the alternatives.

Summary

Declarative or Expressive? Pick two!

Stream operators in Libretto are
safer and simpler than the alternatives.

(I might be biased, feel free to challenge.)

Summary

Streams in Libretto
Control Flow

proactive reactive

producer
Stream[A]

=
✔ ⨁ (✔ & (A ⨂ Stream[A]))

Source[A]
=

✔ & (✔ ⨁ (A ⨂ Source[A]))

consumer
Drain[A]

=
-[✔] ⨁ (-[✔] & (-[A] ⨂ Drain[A]))

Sink[A]
=

-[✔] & (-[✔] ⨁ (-[A] ⨂ Sink[A]))

Pa
yl

oa
d

Fl
ow

⨁
&

&
⨁

A

-[A]

-[Stream[A]] ~ Sink[A]

-[Source[A]] ~ Drain[A]
-⚬⚬-

✔

-[✔]

Bonus: Streams with Custom Terminator
Control Flow

proactive reactive

producer
StreamT[T,A]

=
T ⨁ (T & (A ⨂ StreamT[T,A]))

SourceT[T,A]
=

T & (T ⨁ (A ⨂ SourceT[T,A]))

consumer
DrainT[T,A]

=
-[T] ⨁ (-[T] & (-[A] ⨂ DrainT[T,A]))

SinkT[A]
=

-[T] & (-[T] ⨁ (-[A] ⨂ SinkT[T,A]))

Pa
yl

oa
d

Fl
ow

⨁
&

&
⨁

A

-[A]

T

-[T]

Example: API of a TV streaming service

Tv = ✔ & (ChannelName =⚬ SourceT[Tv,VideoFrame])

• ensures consuming at most 1 channel at a time

Gateway drug to
session types

Thank you!

github.com/TomasMikula/libretto/

(includes runnable version of each shown example)

https://github.com/TomasMikula/libretto/

