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👍 Function Composition 👍

👎 Side-Effects 👎

• Input/output types as the only interface

• No hidden communication between functions

• Spooky action at a distance

• Erode local reasoning
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Concurrent Functional Programming
• Start a bunch of sequential processes

(threads / actors / fibers / virtual threads / green threads)

• Let them communicate via side-effects
(shared mutable state, message passing, …)

Functional

side-effects sequential

processes

concurrency
built on

?

Let that sink in …
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Concurrent Functional Programming

Let’s keep trying!
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• concurrency DSL embedded in Scala


• Compose concurrent programs like 
we compose pure functions 

• No reliance on side-effects 

• No manual thread management


• implicit concurrency


• causal dependence as the only 
form of sequencing



Agenda

1. A taste of Libretto


2. Santa Claus problem
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concurrent 
pair
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• Type is an interface of interaction 
between producer and consumer


• Producer decides

• how many elements there are

• when does each element become available
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A  ⊗  A  ⊗  A  ⊗  A  ⊗  List[A]

B  ⊗  B  ⊗  B  ⊗  B  ⊗  List[B]

f f f f <self>

Implicitly concurrent
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something expensive

Ping
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A
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A
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Sequencing

A B

A B

Done

Signaling.Positive[A]

Junction.Positive[A]
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def race[A, B](using 
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• Test which of two concurrent 
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• Source of non-determinism
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🏃  ⊗  🏃  ⊗  🏃  ⊗  🏃  ⊗  List[🏃]

sortBySignal

def sortBySignal[A]( 
 using Signaling.Positive[A] 
): List[A] -⚬ List[A] = 
 rec { self => 
  λ { as => 
   uncons(as) switch { 
    case Left(one) =>  
     nil(one) 
    case Right(a ⨂ as) => 
     insertBySignal(a ⨂ self(as)) 
 }}}

def insertBySignal[A]( 
 using Signaling.Positive[A] 
): (A ⨂ List[A]) -⚬ List[A] = 
 rec { self => 
  λ { case a ⨂ as => 
   race(a ⨂ as) switch { 
    case Left(a ⨂ as) => 
     cons(a ⨂ as) 
    case Right(a ⨂ as) => 
     uncons(as) switch { 
      case Left(?(one)) => 
       singletonOnSignal(a) 
      case Right(a1 ⨂ as) => 
       cons(a1 ⨂ self(a ⨂ as)) 
 }}}}
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such that

and

Duals
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A Ā AB

A

A

A BAB

B

B

=

=

A

A

idA

B

B

idB



Examples of Duals
Ping Pong

PingPong

A ⊕ B Ā & B̄
A ⊕ BĀ & B̄

Given Ā dual of A, B̄ dual of B

https://en.wikipedia.org/wiki/%C4%80
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Universal Duals

A -[A]
A-[A]

-[Ping] ≃ Pong

-[Pong] ≃ Ping

-[A ⊕ B] ≃ -[A] & -[B]

-[A & B] ≃ -[A] ⊕ -[B]

-[A]

   -[List[A]] ≃ Endless[-[A]] 

-[Endless[A]] ≃ List[-[A]]



Non-empty List
List1[A] = A ⊗ List[A]



Non-empty List
List1[A] = A ⊗ List[A]

borrow

List1[A]

List1[A]A ⊗ -[A]



Non-empty List
List1[A] = A ⊗ List[A]

List1[A]

List1[A]A ⊗ -[A]

A    ⊗    List[A]
=



Non-empty List
List1[A] = A ⊗ List[A]

List1[A]

List1[A]A ⊗ -[A]

A List[A]
=



Non-empty List
List1[A] = A ⊗ List[A]

List1[A]

List1[A]A ⊗ -[A]

A List[A]

A List[A]A-[A]

=



Non-empty List
List1[A] = A ⊗ List[A]

List1[A]

List1[A]A ⊗ -[A]

A List[A]

A List[A]A-[A]

=



Non-empty List
List1[A] = A ⊗ List[A]

List1[A]

List1[A]A ⊗ -[A]

A List[A]

A List[A]
insertBySignal
A-[A]

=



Non-empty List
List1[A] = A ⊗ List[A]

List1[A]

List1[A]A ⊗ -[A]

A List[A]

A List[A]
insertBySignal
A-[A]

=



Non-empty List
List1[A] = A ⊗ List[A]

List1[A]

List1[A]A ⊗ -[A]

A List[A]

A List[A]
insertBySignal

def borrow[A](using 
  Signaling.Positive[A], 
): List1[A] -⚬ (A ⨂ -[A] ⨂ List1[A]) = 

  λ { case a ⨂ as => 

    val (na ⨂ a1) = constant(forevert) 

    (a ⨂ na) ⨂ insertBySignal(a1 ⨂ as) 

  }

A-[A]

=



List1.borrowReset

List1[A]

List1[A]A ⊗ -[B]

A List[A]

A List[A]

insertBySignal

def borrowReset[A](f: B -⚬ A)(using 

  Signaling.Positive[A], 
): List1[A] -⚬ (A ⨂ -[B] ⨂ List1[A]) = 

  λ { case a ⨂ as => 

    val (nb ⨂ b) = constant(forevert) 

    (a ⨂ nb) ⨂ insertBySignal(f(b) ⨂ as) 

  }

B-[B]

=

A

f
List[A]

Different type B of returned element. Reset back to A by a given function.
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Endless.poolReset(f)

List1[A]

List1[A]Endless[A ⊗ -[B]]

One  &   A ⊗ -[B] ⊗ Endless[A ⊗ -[B]]

···  &   A ⊗ -[B] ⊗ Endless[A ⊗ -[B]] ⊗ List1[A]
A ⊗ -[B] Endless[A ⊗ -[B]] List1[A]

List1[A]

borrowReset(f)

A ⊗ -[B] List1[A]

selfid

=

Present a limited supply of elements as an endless supply of borrowed elements.



Endless.mapSequentially(f)

Endless[A]

Endless[B]

• Delay pulling from upstream until previous element has been “handled”



Endless.mapSequentially(f)

Endless[A]

Endless[B]

• Delay pulling from upstream until previous element has been “handled”

B

PingB

given

“handled”



Endless.mapSequentially(f)

Endless[A]

Endless[B]

One     &  (B        ⊗       Endless[B])
=

• Delay pulling from upstream until previous element has been “handled”

B

PingB

given

“handled”



Endless.mapSequentially(f)

Endless[B]

Endless[A]

B

Endless[A]

Endless[B]

One     &  (B        ⊗       Endless[B])

Endless[A]

One

=

• Delay pulling from upstream until previous element has been “handled”

B

PingB

given

“handled”



Endless.mapSequentially(f)

Endless[B]

Endless[A]

B

Endless[A]

Endless[B]

One     &  (B        ⊗       Endless[B])

Endless[A]

One

close

=

• Delay pulling from upstream until previous element has been “handled”

B

PingB

given

“handled”



Endless.mapSequentially(f)

Endless[B]

Endless[A]

B

Endless[A]

Endless[B]

One     &  (B        ⊗       Endless[B])

pull
A

Endless[A]

One

close

Endless[A]

=

• Delay pulling from upstream until previous element has been “handled”

B

PingB

given

“handled”



Endless.mapSequentially(f)

Endless[B]

Endless[A]

B

Endless[A]

Endless[B]

One     &  (B        ⊗       Endless[B])

pull
A

Endless[A]

One

close

f
B

Endless[A]

=

• Delay pulling from upstream until previous element has been “handled”

B

PingB

given

“handled”



Endless.mapSequentially(f)

Endless[B]

Endless[A]

B

Endless[A]

Endless[B]

One     &  (B        ⊗       Endless[B])

pull
A

B Ping

Endless[A]

One

close

f
B

Endless[A]

=

• Delay pulling from upstream until previous element has been “handled”

B

PingB

given

“handled”



Endless.mapSequentially(f)

Endless[B]

Endless[A]

B

Endless[A]

Endless[B]

One     &  (B        ⊗       Endless[B])

pull
A

B Ping

Endless[A]

One

close

f
B

Endless[A]

Pong

=

• Delay pulling from upstream until previous element has been “handled”

B

PingB

given

“handled”



Endless.mapSequentially(f)

Endless[B]

Endless[A]

B

Endless[A]

Endless[B]

One     &  (B        ⊗       Endless[B])

pull
A

B Ping

Endless[A]

One

close

f
B

Endless[A]

Endless[A]Pong

=

action on tail won’t propagate 
upstream until Ping from head 

• Delay pulling from upstream until previous element has been “handled”

B

PingB

given

“handled”



Endless.mapSequentially(f)

Endless[B]

Endless[A]

B

Endless[A]

Endless[B]

One     &  (B        ⊗       Endless[B])

pull
A

B Ping
self

Endless[A]

One

close

f
B

Endless[A]

Endless[A]Pong

=

action on tail won’t propagate 
upstream until Ping from head 

• Delay pulling from upstream until previous element has been “handled”

B

PingB

given

“handled”



Endless.mapSequentially(f)

Endless[B]

Endless[A]

B

Endless[A]

Endless[B]

One     &  (B        ⊗       Endless[B])

pull
A

B Ping
self

Endless[A]

One

close

f
B

Endless[A]

Endless[A]Pong

=

action on tail won’t propagate 
upstream until Ping from head 

Sequencing 
takes effort

• Delay pulling from upstream until previous element has been “handled”

B

PingB

given

“handled”



Endless.mergePreferred

Endless[A]

Endless[A]Endless[A]

preferred 
input



Endless.mergePreferred

Endless[A]

Endless[A]A

Endless[A]Endless[A]
pull



Endless.mergePreferred

Endless[A]

Endless[A]A

Endless[A]Endless[A]
pull

A

Ping A

given



Endless.mergePreferred

Endless[A]

Endless[A]A

Endless[A]Endless[A]

=

One & (A ⊗ Endless[A])Pong

One & (A ⊗ Endless[A])

pull

A

Ping A

given



Endless.mergePreferred

Endless[A]

Endless[A]A Endless[A]Ping

Endless[A]Endless[A]

=

One & (A ⊗ Endless[A])Pong

One & (A ⊗ Endless[A])

pull id

A

Ping A

given



Endless.mergePreferred

Endless[A]

Endless[A]A

race(ping |*| a) switch { 
  case Left(?(_) |*| a) => 
    (a |*| as |*| bs) :>> choice( 
      λ { case a |*| as |*| bs => ···, 
      λ { case a |*| as |*| bs => 
        val b |*| bs1 = pull(bs) 
        race(a |*| b) switch { 
          case Left (a |*| b) => ··· 
          case Right(a |*| b) => ··· 
    }}) 
  case Right(?(_) |*| a) => ··· 
}

Endless[A]Ping

Endless[A]Endless[A]

=

One & (A ⊗ Endless[A])Pong

One & (A ⊗ Endless[A])

pull id

A

Ping A

given



Endless.mergePreferred

Endless[A]

Endless[A]A

race(ping |*| a) switch { 
  case Left(?(_) |*| a) => 
    (a |*| as |*| bs) :>> choice( 
      λ { case a |*| as |*| bs => ···, 
      λ { case a |*| as |*| bs => 
        val b |*| bs1 = pull(bs) 
        race(a |*| b) switch { 
          case Left (a |*| b) => ··· 
          case Right(a |*| b) => ··· 
    }}) 
  case Right(?(_) |*| a) => ··· 
}

Endless[A]Ping

Endless[A]Endless[A]

=

One & (A ⊗ Endless[A])Pong

One & (A ⊗ Endless[A])

pull id
race downstream action vs. 
elem a from preferred input

A

Ping A

given



Endless.mergePreferred

Endless[A]

Endless[A]A

race(ping |*| a) switch { 
  case Left(?(_) |*| a) => 
    (a |*| as |*| bs) :>> choice( 
      λ { case a |*| as |*| bs => ···, 
      λ { case a |*| as |*| bs => 
        val b |*| bs1 = pull(bs) 
        race(a |*| b) switch { 
          case Left (a |*| b) => ··· 
          case Right(a |*| b) => ··· 
    }}) 
  case Right(?(_) |*| a) => ··· 
}

Endless[A]Ping

Endless[A]Endless[A]

=

One & (A ⊗ Endless[A])Pong

One & (A ⊗ Endless[A])

pull id
race downstream action vs. 
elem a from preferred input

downstream won

preferred elem a won

A

Ping A

given



Endless.mergePreferred

Endless[A]

Endless[A]A

race(ping |*| a) switch { 
  case Left(?(_) |*| a) => 
    (a |*| as |*| bs) :>> choice( 
      λ { case a |*| as |*| bs => ···, 
      λ { case a |*| as |*| bs => 
        val b |*| bs1 = pull(bs) 
        race(a |*| b) switch { 
          case Left (a |*| b) => ··· 
          case Right(a |*| b) => ··· 
    }}) 
  case Right(?(_) |*| a) => ··· 
}

Endless[A]Ping

Endless[A]Endless[A]

=

One & (A ⊗ Endless[A])Pong

One & (A ⊗ Endless[A])

pull id
race downstream action vs. 
elem a from preferred input

downstream won

preferred elem a won

close or pull?
A

Ping A

given



Endless.mergePreferred

Endless[A]

Endless[A]A

race(ping |*| a) switch { 
  case Left(?(_) |*| a) => 
    (a |*| as |*| bs) :>> choice( 
      λ { case a |*| as |*| bs => ···, 
      λ { case a |*| as |*| bs => 
        val b |*| bs1 = pull(bs) 
        race(a |*| b) switch { 
          case Left (a |*| b) => ··· 
          case Right(a |*| b) => ··· 
    }}) 
  case Right(?(_) |*| a) => ··· 
}

Endless[A]Ping

Endless[A]Endless[A]

=

One & (A ⊗ Endless[A])Pong

One & (A ⊗ Endless[A])

pull id
race downstream action vs. 
elem a from preferred input

downstream won

preferred elem a won

close or pull?

closeA

Ping A

given



Endless.mergePreferred

Endless[A]

Endless[A]A

race(ping |*| a) switch { 
  case Left(?(_) |*| a) => 
    (a |*| as |*| bs) :>> choice( 
      λ { case a |*| as |*| bs => ···, 
      λ { case a |*| as |*| bs => 
        val b |*| bs1 = pull(bs) 
        race(a |*| b) switch { 
          case Left (a |*| b) => ··· 
          case Right(a |*| b) => ··· 
    }}) 
  case Right(?(_) |*| a) => ··· 
}

Endless[A]Ping

Endless[A]Endless[A]

=

One & (A ⊗ Endless[A])Pong

One & (A ⊗ Endless[A])

pull id
race downstream action vs. 
elem a from preferred input

downstream won

preferred elem a won

close or pull?

close
pull (preferred a not ready yet)

A

Ping A

given



Endless.mergePreferred

Endless[A]

Endless[A]A

race(ping |*| a) switch { 
  case Left(?(_) |*| a) => 
    (a |*| as |*| bs) :>> choice( 
      λ { case a |*| as |*| bs => ···, 
      λ { case a |*| as |*| bs => 
        val b |*| bs1 = pull(bs) 
        race(a |*| b) switch { 
          case Left (a |*| b) => ··· 
          case Right(a |*| b) => ··· 
    }}) 
  case Right(?(_) |*| a) => ··· 
}

Endless[A]Ping

Endless[A]Endless[A]

=

One & (A ⊗ Endless[A])Pong

One & (A ⊗ Endless[A])

pull id
race downstream action vs. 
elem a from preferred input

downstream won

preferred elem a won

close or pull?

close
pull (preferred a not ready yet)

give chance to non-preferred input

A

Ping A

given



Endless.mergePreferred

Endless[A]

Endless[A]A

race(ping |*| a) switch { 
  case Left(?(_) |*| a) => 
    (a |*| as |*| bs) :>> choice( 
      λ { case a |*| as |*| bs => ···, 
      λ { case a |*| as |*| bs => 
        val b |*| bs1 = pull(bs) 
        race(a |*| b) switch { 
          case Left (a |*| b) => ··· 
          case Right(a |*| b) => ··· 
    }}) 
  case Right(?(_) |*| a) => ··· 
}

Endless[A]Ping

Endless[A]Endless[A]

=

One & (A ⊗ Endless[A])Pong

One & (A ⊗ Endless[A])

pull id
race downstream action vs. 
elem a from preferred input

downstream won

preferred elem a won

close or pull?

close
pull (preferred a not ready yet)

give chance to non-preferred inputrace preferred a 
vs. non-preferred b

A

Ping A

given



Endless.mergePreferred

Endless[A]

Endless[A]A

race(ping |*| a) switch { 
  case Left(?(_) |*| a) => 
    (a |*| as |*| bs) :>> choice( 
      λ { case a |*| as |*| bs => ···, 
      λ { case a |*| as |*| bs => 
        val b |*| bs1 = pull(bs) 
        race(a |*| b) switch { 
          case Left (a |*| b) => ··· 
          case Right(a |*| b) => ··· 
    }}) 
  case Right(?(_) |*| a) => ··· 
}

Endless[A]Ping

Endless[A]Endless[A]

=

One & (A ⊗ Endless[A])Pong

One & (A ⊗ Endless[A])

pull id
race downstream action vs. 
elem a from preferred input

downstream won

preferred elem a won

close or pull?

close
pull (preferred a not ready yet)

give chance to non-preferred inputrace preferred a 
vs. non-preferred b

Explicit 
case analysis 

of non-deterministic 
outcomes

A

Ping A

given



The Santa Claus Problem

https://santaclausproblem.cs.unlv.edu/

https://santaclausproblem.cs.unlv.edu/


Santa Claus sleeps in his shop up at the North Pole, and can only be wakened by either all 
nine reindeer being back from their year long vacation on the beaches of some tropical island 
in the South Pacific, or by some elves who are having some difficulties making the toys. One 
elf's problem is never serious enough to wake up Santa (otherwise, he may never get any 
sleep), so, the elves visit Santa in a group of three. When three elves are having their 
problems solved, any other elves wishing to visit Santa must wait for those elves to return. If 
Santa wakes up to find three elves waiting at his shop's door, along with the last reindeer 
having come back from the tropics, Santa has decided that the elves can wait until after 
Christmas, because it is more important to get his sleigh ready as soon as possible. (It is 
assumed that the reindeer don't want to leave the tropics, and therefore they stay there until 
the last possible moment. They might not even come back, but since Santa is footing the bill 
for their year in paradise ... This could also explain the quickness in their delivering of 
presents, since the reindeer can't wait to get back to where it is warm.) The penalty for the 
last reindeer to arrive is that it must get Santa while the others wait in a warming hut before 
being harnessed to the sleigh.


Trono, J.A. (1994). A new exercise in concurrency. ACM SIGCSE Bull., 26, 8-10.

The Santa Claus Problem

https://doi.org/10.1145/187387.187391
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concurrent operation of 🦌’s and 🧝’s implicit

non-deterministic order of return insert into a sorted list

group forming pull k elements from a sorted stream

priority of 🦌🦌🦌 mergePreferred 
(with nested races)

mutual exclusion 
of delivering 🎁 and studying

foldMapSequentially(f) 
(critical section defined by f)

Santa: Recap



Clash of Paradigms
⚡ concurrency seamless, sequencing effortful 

⬆ need for explicit sequencing sometimes uncovers missing causal link


⚡ obligation to consume everything can be annoying 

⬆ prevents many resource leaks 


⚡ explicit case analysis of non-determinism 

⬆ easier to check correctness
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Conclusion
• possible to compose concurrent programs like pure functions

• type-driven development applicable to concurrency

It’s time to
• liberate concurrent programming from the sequential paradigm of threads

• liberate functional concurrency from reliance on side effects

Let’s make it happen!



github.com/TomasMikula/libretto/

https://github.com/TomasMikula/libretto/


Questions?

github.com/TomasMikula/libretto/

https://github.com/TomasMikula/libretto/

