
Concurrent All The Way Down
Functional Concurrency with Libretto

Tomas Mikula

Functional Concurrency with Libretto

Functional Programming

Functional Programming

👍 Function Composition 👍

Functional Programming

👍 Function Composition 👍
• Input/output types as the only interface

• No hidden communication between functions

Functional Programming

👍 Function Composition 👍

👎 Side-Effects 👎

• Input/output types as the only interface

• No hidden communication between functions

Functional Programming

👍 Function Composition 👍

👎 Side-Effects 👎

• Input/output types as the only interface

• No hidden communication between functions

• Spooky action at a distance

• Erode local reasoning

Concurrent Functional Programming

Concurrent Functional Programming
• Start a bunch of sequential processes

Concurrent Functional Programming
• Start a bunch of sequential processes

(threads / actors / fibers / virtual threads / green threads)

Concurrent Functional Programming
• Start a bunch of sequential processes

(threads / actors / fibers / virtual threads / green threads)

• Let them communicate via side-effects

Concurrent Functional Programming
• Start a bunch of sequential processes

(threads / actors / fibers / virtual threads / green threads)

• Let them communicate via side-effects
(shared mutable state, message passing, …)

Concurrent Functional Programming
• Start a bunch of sequential processes

(threads / actors / fibers / virtual threads / green threads)

• Let them communicate via side-effects
(shared mutable state, message passing, …)

Let that sink in …

Concurrent Functional Programming
• Start a bunch of sequential processes

(threads / actors / fibers / virtual threads / green threads)

• Let them communicate via side-effects
(shared mutable state, message passing, …)

Functional

Let that sink in …

Concurrent Functional Programming
• Start a bunch of sequential processes

(threads / actors / fibers / virtual threads / green threads)

• Let them communicate via side-effects
(shared mutable state, message passing, …)

Functional concurrency

Let that sink in …

Concurrent Functional Programming
• Start a bunch of sequential processes

(threads / actors / fibers / virtual threads / green threads)

• Let them communicate via side-effects
(shared mutable state, message passing, …)

Functional

side-effects

concurrency
built on

Let that sink in …

Concurrent Functional Programming
• Start a bunch of sequential processes

(threads / actors / fibers / virtual threads / green threads)

• Let them communicate via side-effects
(shared mutable state, message passing, …)

Functional

side-effects sequential

processes

concurrency
built on

?

Let that sink in …

Composing
Functions

Composing
Functions

Composing
Functions Threads

Composing
Functions Threads

We still don’t know how to do
Concurrent Functional Programming

We still don’t know how to do
Concurrent Functional Programming

Let’s keep trying!

Goals

• Compose concurrent programs like
we compose pure functions

• No reliance on side-effects

• No manual thread management

• implicit concurrency

• causal dependence as the only
form of sequencing

Libretto
• concurrency DSL embedded in Scala

• Compose concurrent programs like
we compose pure functions

• No reliance on side-effects

• No manual thread management

• implicit concurrency

• causal dependence as the only
form of sequencing

Libretto
• concurrency DSL embedded in Scala

• Compose concurrent programs like
we compose pure functions

• No reliance on side-effects

• No manual thread management

• implicit concurrency

• causal dependence as the only
form of sequencing

Agenda

1. A taste of Libretto

2. Santa Claus problem

List in Libretto

List[A] = One ⊕ (A ⊗ List[A])

List in Libretto

List[A] = One ⊕ (A ⊗ List[A])

producer
choice

empty

concurrent
pair

non-empty

• Type is an interface of interaction 
between producer and consumer

• Producer decides

• how many elements there are

• when does each element become available

List[A]

producer

consumer

List in Libretto

List[A] = One ⊕ (A ⊗ List[A])

producer

consumer

List[A]

List in Libretto

List[A] = One ⊕ (A ⊗ List[A])

producer

consumer

One ⊕ (A ⊗ List[A])

List in Libretto

List[A] = One ⊕ (A ⊗ List[A])

producer

consumer

One ⊕ (A ⊗ List[A])

List in Libretto

List[A] = One ⊕ (A ⊗ List[A])

producer

consumer

A ⊗ List[A]

List in Libretto

List[A] = One ⊕ (A ⊗ List[A])

producer

consumer

A ⊗ (One ⊕ (A ⊗ List[A]))

List in Libretto

List[A] = One ⊕ (A ⊗ List[A])

producer

consumer

A ⊗ (One ⊕ (A ⊗ List[A]))

List in Libretto

List[A] = One ⊕ (A ⊗ List[A])

producer

consumer

A ⊗ (A ⊗ List[A])

List in Libretto

List[A] = One ⊕ (A ⊗ List[A])

producer

consumer

A ⊗ A ⊗ List[A]

List in Libretto

List[A] = One ⊕ (A ⊗ List[A])

producer

consumer

A A List[A]

List in Libretto

List[A] = One ⊕ (A ⊗ List[A])

producer

consumer

A A List[A]

List in Libretto

List[A] = One ⊕ (A ⊗ List[A])

producer

consumer

Int Int List[Int]

List in Libretto

List[A] = One ⊕ (A ⊗ List[A])

producer

consumer

Int Int List[Int]

List in Libretto

List[A] = One ⊕ (A ⊗ List[A])

producer

consumer

Ping Ping List[Ping]

List in Libretto

List[A] = One ⊕ (A ⊗ List[A])

producer

consumer

Ping Ping List[Ping]

List in Libretto

List[A] = One ⊕ (A ⊗ List[A])

producer

consumer

One One List[One]

List in Libretto

List[A] = One ⊕ (A ⊗ List[A])

producer

consumer

One One List[One]⛔ ⛔

List in Libretto

List[A] = One ⊕ (A ⊗ List[A])

producer

consumer

Int ⊗ Pong List[Int ⊗ Pong]Int ⊗ Pong

List in Libretto

List[A] = One ⊕ (A ⊗ List[A])

producer

consumer

Int ⊗ Pong List[Int ⊗ Pong]Int ⊗ Pong

List.map(f)

List[A]

List[B]

List.map(f)

List[A]

List[B]

unpack

pack

One ⊕ (A ⊗ List[A])

One ⊕ (B ⊗ List[B])

List.map(f)

List[A]

List[B]

unpack

pack

either

One

One ⊕ (B ⊗ List[B])

One ⊕ (A ⊗ List[A])

One ⊕ (B ⊗ List[B])

A ⊗ List[A]

One ⊕ (B ⊗ List[B])

List.map(f)

List[A]

List[B]

unpack

pack

either

One

One ⊕ (B ⊗ List[B])

One ⊕ (A ⊗ List[A])

One ⊕ (B ⊗ List[B])

injectL

A ⊗ List[A]

One ⊕ (B ⊗ List[B])

List.map(f)

List[A]

List[B]

unpack

pack

either

One

One ⊕ (B ⊗ List[B])

One ⊕ (A ⊗ List[A])

One ⊕ (B ⊗ List[B])

injectL

A ⊗ List[A]

One ⊕ (B ⊗ List[B])

A ⊗ List[A]

B ⊗ List[B]
injectR

f <self>

List.map(f)

List[A]

List[B]

unpack

pack

either

One

One ⊕ (B ⊗ List[B])

One ⊕ (A ⊗ List[A])

One ⊕ (B ⊗ List[B])

injectL

A ⊗ List[A]

One ⊕ (B ⊗ List[B])

A ⊗ List[A]

B ⊗ List[B]
injectR

f <self>

def map[A, B](
 f: A -⚬ B
): List[A] -⚬ List[B] =

// point-free

rec { self =>
 unpack >
 either(
 injectL,
 par(f, self) > injectR
) >
 pack
}

List.map(f)

List[A]

List[B]

unpack

pack

either

One

One ⊕ (B ⊗ List[B])

One ⊕ (A ⊗ List[A])

One ⊕ (B ⊗ List[B])

injectL

A ⊗ List[A]

One ⊕ (B ⊗ List[B])

A ⊗ List[A]

B ⊗ List[B]
injectR

f <self>

def map[A, B](
 f: A -⚬ B
): List[A] -⚬ List[B] =

// point-full

rec { self =>
 λ { as =>
 pack(
 unpack(as) switch {
 case Left(one) =>
 injectL(one)
 case Right(h ⊗ t) =>
 injectR(f(h) ⊗ self(t))
})}}

List.map(f)

List[A]

List[B]

unpack

pack

either

One

One ⊕ (B ⊗ List[B])

One ⊕ (A ⊗ List[A])

One ⊕ (B ⊗ List[B])

injectL

A ⊗ List[A]

One ⊕ (B ⊗ List[B])

A ⊗ List[A]

B ⊗ List[B]
injectR

f <self>

def map[A, B](
 f: A -⚬ B
): List[A] -⚬ List[B] =

// point-full

rec { self =>
 λ { as =>
 pack(
 unpack(as) switch {
 case Left(one) =>
 injectL(one)
 case Right(h ⊗ t) =>
 injectR(f(h) ⊗ self(t))
})}}

A ⊗ List[A]

B ⊗ List[B]

List.map(f)

A ⊗ List[A]

B ⊗ List[B]

f <self>

List.map(f)

A ⊗ A ⊗ List[A]

B ⊗ B ⊗ List[B]

f f <self>

List.map(f)

A ⊗ A ⊗ A ⊗ List[A]

B ⊗ B ⊗ B ⊗ List[B]

f f f <self>

List.map(f)

A ⊗ A ⊗ A ⊗ A ⊗ List[A]

B ⊗ B ⊗ B ⊗ B ⊗ List[B]

f f f f <self>

List.map(f)

A ⊗ A ⊗ A ⊗ A ⊗ List[A]

B ⊗ B ⊗ B ⊗ B ⊗ List[B]

f f f f <self>

Implicitly concurrent

Endless

Endless[A] = One & (A ⊗ Endless[A])

Endless

Endless[A] = One & (A ⊗ Endless[A])

consumer
choice

Endless

Endless[A] = One & (A ⊗ Endless[A])

consumer
choice

• consumer may

• close

• ask for next element

• producer has to oblige

• co-List

Endless

Endless[A] = One & (A ⊗ Endless[A])

List[A] = One ⊕ (A ⊗ List[A])

consumer
choice

producer
choice

• consumer may

• close

• ask for next element

• producer has to oblige

• co-List

Signals
Ping Pong

Signals
Ping Pong

dismissible

Signals
Ping Pong

dismissible

Ping

One Pong

One

Signals
Ping Pong

dismissible

Ping

Pong

Signals
Ping Pong Done Need

dismissible non-dismissible

• must be awaited

• signal completion of  

something expensive

Ping

Pong

Signals

Done

Ping Done

Ping introduction (e.g.)

A ⊕ B

Ping A ⊕ B

Done

Ping Done

Ping elimination (e.g.)

A ⊕ B

Ping A ⊕ B

Signals

Done

Ping Done

Ping introduction (e.g.)

A ⊕ B

Ping A ⊕ B

Done

Ping Done

Ping elimination (e.g.)

A ⊕ B

Ping A ⊕ B Need

Pong Need

Pong introduction (e.g.)

A & B

Pong A & B

Need

Pong Need

Pong elimination (e.g.)

A & B

Pong A & B

Signals

A

Ping A

Signaling.Positive[A]

A

Ping A

Deferrable.Positive[A]

A

Pong A

Signaling.Negative[A]

A

Pong A

Deferrable.Negative[A]

Sequencing

A B

A B

Ping

Signaling.Positive[A]

Deferrable.Positive[B]

Sequencing

A B

A B

Done

Signaling.Positive[A]

Junction.Positive[A]

Racing
• Test which of two concurrent

events occurred first

• Source of non-determinism

Racing

One ⊕ One

Ping Ping

racePings

• Test which of two concurrent
events occurred first

• Source of non-determinism

Racing

One ⊕ One

Ping Ping

racePings

A ⊗ B ⊕ A ⊗ B

A B

def race[A, B](using
 Signaling.Positive[A],
 Signaling.Positive[B],
) =

• Test which of two concurrent
events occurred first

• Source of non-determinism

Racing

One ⊕ One

Ping Ping

racePings

A ⊗ B ⊕ A ⊗ B

A B

Ping A Ping B

def race[A, B](using
 Signaling.Positive[A],
 Signaling.Positive[B],
) =

• Test which of two concurrent
events occurred first

• Source of non-determinism

Racing

One ⊕ One

Ping Ping

racePings

A ⊗ B ⊕ A ⊗ B

A B

Ping A Ping B

Ping Ping A B

def race[A, B](using
 Signaling.Positive[A],
 Signaling.Positive[B],
) =

• Test which of two concurrent
events occurred first

• Source of non-determinism

Racing

One ⊕ One

Ping Ping

racePings

A ⊗ B ⊕ A ⊗ B

A B

Ping A Ping B

Ping Ping A B

One ⊕ One A ⊗ B
racePings

def race[A, B](using
 Signaling.Positive[A],
 Signaling.Positive[B],
) =

• Test which of two concurrent
events occurred first

• Source of non-determinism

id

Racing

One ⊕ One

Ping Ping

racePings

A ⊗ B ⊕ A ⊗ B

A B

Ping A Ping B

Ping Ping A B

One ⊕ One A ⊗ B
racePings

def race[A, B](using
 Signaling.Positive[A],
 Signaling.Positive[B],
) =

• Test which of two concurrent
events occurred first

• Source of non-determinism

id

List.sortBySignal

🏃 ⊗ 🏃 ⊗ 🏃 ⊗ 🏃 ⊗ List[🏃]

Runners added to the list

as they register for the marathon.

List.sortBySignal

🏃 ⊗ 🏃 ⊗ 🏃 ⊗ 🏃 ⊗ List[🏃]

Runners added to the list

as they register for the marathon.

🏃

Ping 🏃

signals when the runner
finished the marathon

List.sortBySignal

🏃 ⊗ 🏃 ⊗ 🏃 ⊗ 🏃 ⊗ List[🏃]

🏃 ⊗ 🏃 ⊗ 🏃 ⊗ 🏃 ⊗ List[🏃]

Runners added to the list

as they register for the marathon.

🏃

Ping 🏃

Runners appear in the output list

as they finish the marathon.

signals when the runner
finished the marathon

List.sortBySignal

🏃 ⊗ 🏃 ⊗ 🏃 ⊗ 🏃 ⊗ List[🏃]

🏃 ⊗ 🏃 ⊗ 🏃 ⊗ 🏃 ⊗ List[🏃]

sortBySignal

Runners added to the list

as they register for the marathon.

🏃

Ping 🏃

Runners appear in the output list

as they finish the marathon.

signals when the runner
finished the marathon

List.sortBySignal
🏃 ⊗ 🏃 ⊗ 🏃 ⊗ 🏃 ⊗ List[🏃]

🏃 ⊗ 🏃 ⊗ 🏃 ⊗ 🏃 ⊗ List[🏃]

sortBySignal

List.sortBySignal
🏃 ⊗ 🏃 ⊗ 🏃 ⊗ 🏃 ⊗ List[🏃]

🏃 ⊗ 🏃 ⊗ 🏃 ⊗ 🏃 ⊗ List[🏃]

sortBySignal

def sortBySignal[A](
 using Signaling.Positive[A]
): List[A] -⚬ List[A] =
 rec { self =>
 λ { as =>
 uncons(as) switch {
 case Left(one) =>
 nil(one)
 case Right(a ⨂ as) =>
 insertBySignal(a ⨂ self(as))
 }}}

List.sortBySignal
🏃 ⊗ 🏃 ⊗ 🏃 ⊗ 🏃 ⊗ List[🏃]

🏃 ⊗ 🏃 ⊗ 🏃 ⊗ 🏃 ⊗ List[🏃]

sortBySignal

def sortBySignal[A](
 using Signaling.Positive[A]
): List[A] -⚬ List[A] =
 rec { self =>
 λ { as =>
 uncons(as) switch {
 case Left(one) =>
 nil(one)
 case Right(a ⨂ as) =>
 insertBySignal(a ⨂ self(as))
 }}}

def insertBySignal[A](
 using Signaling.Positive[A]
): (A ⨂ List[A]) -⚬ List[A] =
 rec { self =>
 λ { case a ⨂ as =>
 race(a ⨂ as) switch {
 case Left(a ⨂ as) =>
 cons(a ⨂ as)
 case Right(a ⨂ as) =>
 uncons(as) switch {
 case Left(?(one)) =>
 singletonOnSignal(a)
 case Right(a1 ⨂ as) =>
 cons(a1 ⨂ self(a ⨂ as))
 }}}}

B is the dual of A if there exist and

Duals
A B

AB

 B is the dual of A if there exist and

such that

and

Duals
A B

AB

A Ā AB

A

A

A BAB

B

B

=

=

A

A

idA

B

B

idB

Examples of Duals
Ping Pong

PingPong

A ⊕ B Ā & B̄
A ⊕ BĀ & B̄

Given Ā dual of A, B̄ dual of B

https://en.wikipedia.org/wiki/%C4%80

Universal Duals

A -[A]
A-[A]

-[A]

Universal Duals

A -[A]
A-[A]

-[Ping] ≃ Pong

-[Pong] ≃ Ping

-[A]

Universal Duals

A -[A]
A-[A]

-[Ping] ≃ Pong

-[Pong] ≃ Ping

-[A ⊕ B] ≃ -[A] & -[B]

-[A & B] ≃ -[A] ⊕ -[B]

-[A]

Universal Duals

A -[A]
A-[A]

-[Ping] ≃ Pong

-[Pong] ≃ Ping

-[A ⊕ B] ≃ -[A] & -[B]

-[A & B] ≃ -[A] ⊕ -[B]

-[A]

 -[List[A]] ≃ Endless[-[A]]

-[Endless[A]] ≃ List[-[A]]

Non-empty List
List1[A] = A ⊗ List[A]

Non-empty List
List1[A] = A ⊗ List[A]

borrow

List1[A]

List1[A]A ⊗ -[A]

Non-empty List
List1[A] = A ⊗ List[A]

List1[A]

List1[A]A ⊗ -[A]

A ⊗ List[A]
=

Non-empty List
List1[A] = A ⊗ List[A]

List1[A]

List1[A]A ⊗ -[A]

A List[A]
=

Non-empty List
List1[A] = A ⊗ List[A]

List1[A]

List1[A]A ⊗ -[A]

A List[A]

A List[A]A-[A]

=

Non-empty List
List1[A] = A ⊗ List[A]

List1[A]

List1[A]A ⊗ -[A]

A List[A]

A List[A]A-[A]

=

Non-empty List
List1[A] = A ⊗ List[A]

List1[A]

List1[A]A ⊗ -[A]

A List[A]

A List[A]
insertBySignal
A-[A]

=

Non-empty List
List1[A] = A ⊗ List[A]

List1[A]

List1[A]A ⊗ -[A]

A List[A]

A List[A]
insertBySignal
A-[A]

=

Non-empty List
List1[A] = A ⊗ List[A]

List1[A]

List1[A]A ⊗ -[A]

A List[A]

A List[A]
insertBySignal

def borrow[A](using
 Signaling.Positive[A],
): List1[A] -⚬ (A ⨂ -[A] ⨂ List1[A]) =

 λ { case a ⨂ as =>

 val (na ⨂ a1) = constant(forevert)

 (a ⨂ na) ⨂ insertBySignal(a1 ⨂ as)

 }

A-[A]

=

List1.borrowReset

List1[A]

List1[A]A ⊗ -[B]

A List[A]

A List[A]

insertBySignal

def borrowReset[A](f: B -⚬ A)(using

 Signaling.Positive[A],
): List1[A] -⚬ (A ⨂ -[B] ⨂ List1[A]) =

 λ { case a ⨂ as =>

 val (nb ⨂ b) = constant(forevert)

 (a ⨂ nb) ⨂ insertBySignal(f(b) ⨂ as)

 }

B-[B]

=

A

f
List[A]

Different type B of returned element. Reset back to A by a given function.

Endless.pool

List1[A]

List1[A]Endless[A ⊗ -[A]]

Present a limited supply of elements as an endless supply of borrowed elements.

Endless.pool

List1[A]

List1[A]Endless[A ⊗ -[A]]

One & A ⊗ -[A] ⊗ Endless[A ⊗ -[A]]
=

Present a limited supply of elements as an endless supply of borrowed elements.

Endless.pool

List1[A]

List1[A]Endless[A ⊗ -[A]]

One & A ⊗ -[A] ⊗ Endless[A ⊗ -[A]]

··· & A ⊗ -[A] ⊗ Endless[A ⊗ -[A]] ⊗ List1[A]

=

Present a limited supply of elements as an endless supply of borrowed elements.

Endless.pool

List1[A]

List1[A]Endless[A ⊗ -[A]]

One & A ⊗ -[A] ⊗ Endless[A ⊗ -[A]]

··· & A ⊗ -[A] ⊗ Endless[A ⊗ -[A]] ⊗ List1[A]
A ⊗ -[A] Endless[A ⊗ -[A]] List1[A]

List1[A]

=

Present a limited supply of elements as an endless supply of borrowed elements.

Endless.pool

List1[A]

List1[A]Endless[A ⊗ -[A]]

One & A ⊗ -[A] ⊗ Endless[A ⊗ -[A]]

··· & A ⊗ -[A] ⊗ Endless[A ⊗ -[A]] ⊗ List1[A]
A ⊗ -[A] Endless[A ⊗ -[A]] List1[A]

List1[A]

borrow

A ⊗ -[A] List1[A]

=

Present a limited supply of elements as an endless supply of borrowed elements.

Endless.pool

List1[A]

List1[A]Endless[A ⊗ -[A]]

One & A ⊗ -[A] ⊗ Endless[A ⊗ -[A]]

··· & A ⊗ -[A] ⊗ Endless[A ⊗ -[A]] ⊗ List1[A]
A ⊗ -[A] Endless[A ⊗ -[A]] List1[A]

List1[A]

borrow

A ⊗ -[A] List1[A]

selfid

=

Present a limited supply of elements as an endless supply of borrowed elements.

Endless.poolReset(f)

List1[A]

List1[A]Endless[A ⊗ -[B]]

One & A ⊗ -[B] ⊗ Endless[A ⊗ -[B]]

··· & A ⊗ -[B] ⊗ Endless[A ⊗ -[B]] ⊗ List1[A]
A ⊗ -[B] Endless[A ⊗ -[B]] List1[A]

List1[A]

borrowReset(f)

A ⊗ -[B] List1[A]

selfid

=

Present a limited supply of elements as an endless supply of borrowed elements.

Endless.mapSequentially(f)

Endless[A]

Endless[B]

• Delay pulling from upstream until previous element has been “handled”

Endless.mapSequentially(f)

Endless[A]

Endless[B]

• Delay pulling from upstream until previous element has been “handled”

B

PingB

given

“handled”

Endless.mapSequentially(f)

Endless[A]

Endless[B]

One & (B ⊗ Endless[B])
=

• Delay pulling from upstream until previous element has been “handled”

B

PingB

given

“handled”

Endless.mapSequentially(f)

Endless[B]

Endless[A]

B

Endless[A]

Endless[B]

One & (B ⊗ Endless[B])

Endless[A]

One

=

• Delay pulling from upstream until previous element has been “handled”

B

PingB

given

“handled”

Endless.mapSequentially(f)

Endless[B]

Endless[A]

B

Endless[A]

Endless[B]

One & (B ⊗ Endless[B])

Endless[A]

One

close

=

• Delay pulling from upstream until previous element has been “handled”

B

PingB

given

“handled”

Endless.mapSequentially(f)

Endless[B]

Endless[A]

B

Endless[A]

Endless[B]

One & (B ⊗ Endless[B])

pull
A

Endless[A]

One

close

Endless[A]

=

• Delay pulling from upstream until previous element has been “handled”

B

PingB

given

“handled”

Endless.mapSequentially(f)

Endless[B]

Endless[A]

B

Endless[A]

Endless[B]

One & (B ⊗ Endless[B])

pull
A

Endless[A]

One

close

f
B

Endless[A]

=

• Delay pulling from upstream until previous element has been “handled”

B

PingB

given

“handled”

Endless.mapSequentially(f)

Endless[B]

Endless[A]

B

Endless[A]

Endless[B]

One & (B ⊗ Endless[B])

pull
A

B Ping

Endless[A]

One

close

f
B

Endless[A]

=

• Delay pulling from upstream until previous element has been “handled”

B

PingB

given

“handled”

Endless.mapSequentially(f)

Endless[B]

Endless[A]

B

Endless[A]

Endless[B]

One & (B ⊗ Endless[B])

pull
A

B Ping

Endless[A]

One

close

f
B

Endless[A]

Pong

=

• Delay pulling from upstream until previous element has been “handled”

B

PingB

given

“handled”

Endless.mapSequentially(f)

Endless[B]

Endless[A]

B

Endless[A]

Endless[B]

One & (B ⊗ Endless[B])

pull
A

B Ping

Endless[A]

One

close

f
B

Endless[A]

Endless[A]Pong

=

action on tail won’t propagate
upstream until Ping from head

• Delay pulling from upstream until previous element has been “handled”

B

PingB

given

“handled”

Endless.mapSequentially(f)

Endless[B]

Endless[A]

B

Endless[A]

Endless[B]

One & (B ⊗ Endless[B])

pull
A

B Ping
self

Endless[A]

One

close

f
B

Endless[A]

Endless[A]Pong

=

action on tail won’t propagate
upstream until Ping from head

• Delay pulling from upstream until previous element has been “handled”

B

PingB

given

“handled”

Endless.mapSequentially(f)

Endless[B]

Endless[A]

B

Endless[A]

Endless[B]

One & (B ⊗ Endless[B])

pull
A

B Ping
self

Endless[A]

One

close

f
B

Endless[A]

Endless[A]Pong

=

action on tail won’t propagate
upstream until Ping from head

Sequencing
takes effort

• Delay pulling from upstream until previous element has been “handled”

B

PingB

given

“handled”

Endless.mergePreferred

Endless[A]

Endless[A]Endless[A]

preferred
input

Endless.mergePreferred

Endless[A]

Endless[A]A

Endless[A]Endless[A]
pull

Endless.mergePreferred

Endless[A]

Endless[A]A

Endless[A]Endless[A]
pull

A

Ping A

given

Endless.mergePreferred

Endless[A]

Endless[A]A

Endless[A]Endless[A]

=

One & (A ⊗ Endless[A])Pong

One & (A ⊗ Endless[A])

pull

A

Ping A

given

Endless.mergePreferred

Endless[A]

Endless[A]A Endless[A]Ping

Endless[A]Endless[A]

=

One & (A ⊗ Endless[A])Pong

One & (A ⊗ Endless[A])

pull id

A

Ping A

given

Endless.mergePreferred

Endless[A]

Endless[A]A

race(ping |*| a) switch {
 case Left(?(_) |*| a) =>
 (a |*| as |*| bs) :>> choice(
 λ { case a |*| as |*| bs => ···,
 λ { case a |*| as |*| bs =>
 val b |*| bs1 = pull(bs)
 race(a |*| b) switch {
 case Left (a |*| b) => ···
 case Right(a |*| b) => ···
 }})
 case Right(?(_) |*| a) => ···
}

Endless[A]Ping

Endless[A]Endless[A]

=

One & (A ⊗ Endless[A])Pong

One & (A ⊗ Endless[A])

pull id

A

Ping A

given

Endless.mergePreferred

Endless[A]

Endless[A]A

race(ping |*| a) switch {
 case Left(?(_) |*| a) =>
 (a |*| as |*| bs) :>> choice(
 λ { case a |*| as |*| bs => ···,
 λ { case a |*| as |*| bs =>
 val b |*| bs1 = pull(bs)
 race(a |*| b) switch {
 case Left (a |*| b) => ···
 case Right(a |*| b) => ···
 }})
 case Right(?(_) |*| a) => ···
}

Endless[A]Ping

Endless[A]Endless[A]

=

One & (A ⊗ Endless[A])Pong

One & (A ⊗ Endless[A])

pull id
race downstream action vs.
elem a from preferred input

A

Ping A

given

Endless.mergePreferred

Endless[A]

Endless[A]A

race(ping |*| a) switch {
 case Left(?(_) |*| a) =>
 (a |*| as |*| bs) :>> choice(
 λ { case a |*| as |*| bs => ···,
 λ { case a |*| as |*| bs =>
 val b |*| bs1 = pull(bs)
 race(a |*| b) switch {
 case Left (a |*| b) => ···
 case Right(a |*| b) => ···
 }})
 case Right(?(_) |*| a) => ···
}

Endless[A]Ping

Endless[A]Endless[A]

=

One & (A ⊗ Endless[A])Pong

One & (A ⊗ Endless[A])

pull id
race downstream action vs.
elem a from preferred input

downstream won

preferred elem a won

A

Ping A

given

Endless.mergePreferred

Endless[A]

Endless[A]A

race(ping |*| a) switch {
 case Left(?(_) |*| a) =>
 (a |*| as |*| bs) :>> choice(
 λ { case a |*| as |*| bs => ···,
 λ { case a |*| as |*| bs =>
 val b |*| bs1 = pull(bs)
 race(a |*| b) switch {
 case Left (a |*| b) => ···
 case Right(a |*| b) => ···
 }})
 case Right(?(_) |*| a) => ···
}

Endless[A]Ping

Endless[A]Endless[A]

=

One & (A ⊗ Endless[A])Pong

One & (A ⊗ Endless[A])

pull id
race downstream action vs.
elem a from preferred input

downstream won

preferred elem a won

close or pull?
A

Ping A

given

Endless.mergePreferred

Endless[A]

Endless[A]A

race(ping |*| a) switch {
 case Left(?(_) |*| a) =>
 (a |*| as |*| bs) :>> choice(
 λ { case a |*| as |*| bs => ···,
 λ { case a |*| as |*| bs =>
 val b |*| bs1 = pull(bs)
 race(a |*| b) switch {
 case Left (a |*| b) => ···
 case Right(a |*| b) => ···
 }})
 case Right(?(_) |*| a) => ···
}

Endless[A]Ping

Endless[A]Endless[A]

=

One & (A ⊗ Endless[A])Pong

One & (A ⊗ Endless[A])

pull id
race downstream action vs.
elem a from preferred input

downstream won

preferred elem a won

close or pull?

closeA

Ping A

given

Endless.mergePreferred

Endless[A]

Endless[A]A

race(ping |*| a) switch {
 case Left(?(_) |*| a) =>
 (a |*| as |*| bs) :>> choice(
 λ { case a |*| as |*| bs => ···,
 λ { case a |*| as |*| bs =>
 val b |*| bs1 = pull(bs)
 race(a |*| b) switch {
 case Left (a |*| b) => ···
 case Right(a |*| b) => ···
 }})
 case Right(?(_) |*| a) => ···
}

Endless[A]Ping

Endless[A]Endless[A]

=

One & (A ⊗ Endless[A])Pong

One & (A ⊗ Endless[A])

pull id
race downstream action vs.
elem a from preferred input

downstream won

preferred elem a won

close or pull?

close
pull (preferred a not ready yet)

A

Ping A

given

Endless.mergePreferred

Endless[A]

Endless[A]A

race(ping |*| a) switch {
 case Left(?(_) |*| a) =>
 (a |*| as |*| bs) :>> choice(
 λ { case a |*| as |*| bs => ···,
 λ { case a |*| as |*| bs =>
 val b |*| bs1 = pull(bs)
 race(a |*| b) switch {
 case Left (a |*| b) => ···
 case Right(a |*| b) => ···
 }})
 case Right(?(_) |*| a) => ···
}

Endless[A]Ping

Endless[A]Endless[A]

=

One & (A ⊗ Endless[A])Pong

One & (A ⊗ Endless[A])

pull id
race downstream action vs.
elem a from preferred input

downstream won

preferred elem a won

close or pull?

close
pull (preferred a not ready yet)

give chance to non-preferred input

A

Ping A

given

Endless.mergePreferred

Endless[A]

Endless[A]A

race(ping |*| a) switch {
 case Left(?(_) |*| a) =>
 (a |*| as |*| bs) :>> choice(
 λ { case a |*| as |*| bs => ···,
 λ { case a |*| as |*| bs =>
 val b |*| bs1 = pull(bs)
 race(a |*| b) switch {
 case Left (a |*| b) => ···
 case Right(a |*| b) => ···
 }})
 case Right(?(_) |*| a) => ···
}

Endless[A]Ping

Endless[A]Endless[A]

=

One & (A ⊗ Endless[A])Pong

One & (A ⊗ Endless[A])

pull id
race downstream action vs.
elem a from preferred input

downstream won

preferred elem a won

close or pull?

close
pull (preferred a not ready yet)

give chance to non-preferred inputrace preferred a
vs. non-preferred b

A

Ping A

given

Endless.mergePreferred

Endless[A]

Endless[A]A

race(ping |*| a) switch {
 case Left(?(_) |*| a) =>
 (a |*| as |*| bs) :>> choice(
 λ { case a |*| as |*| bs => ···,
 λ { case a |*| as |*| bs =>
 val b |*| bs1 = pull(bs)
 race(a |*| b) switch {
 case Left (a |*| b) => ···
 case Right(a |*| b) => ···
 }})
 case Right(?(_) |*| a) => ···
}

Endless[A]Ping

Endless[A]Endless[A]

=

One & (A ⊗ Endless[A])Pong

One & (A ⊗ Endless[A])

pull id
race downstream action vs.
elem a from preferred input

downstream won

preferred elem a won

close or pull?

close
pull (preferred a not ready yet)

give chance to non-preferred inputrace preferred a
vs. non-preferred b

Explicit
case analysis

of non-deterministic
outcomes

A

Ping A

given

The Santa Claus Problem

https://santaclausproblem.cs.unlv.edu/

https://santaclausproblem.cs.unlv.edu/

Santa Claus sleeps in his shop up at the North Pole, and can only be wakened by either all
nine reindeer being back from their year long vacation on the beaches of some tropical island
in the South Pacific, or by some elves who are having some difficulties making the toys. One
elf's problem is never serious enough to wake up Santa (otherwise, he may never get any
sleep), so, the elves visit Santa in a group of three. When three elves are having their
problems solved, any other elves wishing to visit Santa must wait for those elves to return. If
Santa wakes up to find three elves waiting at his shop's door, along with the last reindeer
having come back from the tropics, Santa has decided that the elves can wait until after
Christmas, because it is more important to get his sleigh ready as soon as possible. (It is
assumed that the reindeer don't want to leave the tropics, and therefore they stay there until
the last possible moment. They might not even come back, but since Santa is footing the bill
for their year in paradise ... This could also explain the quickness in their delivering of
presents, since the reindeer can't wait to get back to where it is warm.) The penalty for the
last reindeer to arrive is that it must get Santa while the others wait in a warming hut before
being harnessed to the sleigh.

Trono, J.A. (1994). A new exercise in concurrency. ACM SIGCSE Bull., 26, 8-10.

The Santa Claus Problem

https://doi.org/10.1145/187387.187391

The Santa Claus Problem

🎅

Reindeer

Elf

by vecteezy.com

http://vecteezy.com

The Santa Claus Problem

🎅

Reindeer

Elf
non-deterministic

order of return

by vecteezy.com

http://vecteezy.com

The Santa Claus Problem

🎅

Reindeer

Elf
non-deterministic

order of return

PRI
ORI

TY

by vecteezy.com

http://vecteezy.com

Endless[(🦌🦌🦌) ⊕ (🧝🧝🧝)]

Done

mergePreferred

Endless[(🦌🦌🦌)]

group(9) group(3)
List1[🦌] List1[🧝]

Endless[🦌 ⊗ -🦌] Endless[🧝 ⊗ -🧝]List1[🦌] List1[🧝]

List1[🦌] List1[🧝]

poolReset(vacation) poolReset(makeToys)

Endless[🦌 ⊗ -🦌] Endless[🧝 ⊗ -🧝]

🎅

Endless[(🧝🧝🧝)]

Endless[(🦌🦌🦌) ⊕ (🧝🧝🧝)]

Done

mergePreferred

Endless[(🦌🦌🦌)]

group(9) group(3)
List1[🦌] List1[🧝]

Endless[🦌 ⊗ -🦌] Endless[🧝 ⊗ -🧝]List1[🦌] List1[🧝]

List1[🦌] List1[🧝]

poolReset(vacation) poolReset(makeToys)

Endless[🦌 ⊗ -🦌] Endless[🧝 ⊗ -🧝]

🎅

Endless[(🧝🧝🧝)]

foldMapSequentially(go)

(🦌🦌🦌) ⊕ (🧝🧝🧝)]

Done

go

Endless[(🦌🦌🦌) ⊕ (🧝🧝🧝)]

Done

mergePreferred

Endless[(🦌🦌🦌)]

group(9) group(3)
List1[🦌] List1[🧝]

Endless[🦌 ⊗ -🦌] Endless[🧝 ⊗ -🧝]List1[🦌] List1[🧝]

List1[🦌] List1[🧝]

poolReset(vacation) poolReset(makeToys)

Endless[🦌 ⊗ -🦌] Endless[🧝 ⊗ -🧝]

🎅

Endless[(🧝🧝🧝)]

foldMapSequentially(go)

(🦌🦌🦌) ⊕ (🧝🧝🧝)]

Done

deliverPresents

release

(🦌🦌🦌)

(🦌🦌🦌)Done

Done

meetInStudy

release

(🧝🧝🧝)

(🧝🧝🧝)Done

Done

go

Endless[(🦌🦌🦌) ⊕ (🧝🧝🧝)]

Done

mergePreferred

Endless[(🦌🦌🦌)]

group(9) group(3)
List1[🦌] List1[🧝]

Endless[🦌 ⊗ -🦌] Endless[🧝 ⊗ -🧝]List1[🦌] List1[🧝]

List1[🦌] List1[🧝]

poolReset(vacation) poolReset(makeToys)

Endless[🦌 ⊗ -🦌] Endless[🧝 ⊗ -🧝]

🎅

Endless[(🧝🧝🧝)]

foldMapSequentially(go)

(🦌🦌🦌) ⊕ (🧝🧝🧝)]

Done

deliverPresents

release

(🦌🦌🦌)

(🦌🦌🦌)Done

Done

meetInStudy

release

(🧝🧝🧝)

(🧝🧝🧝)Done

Done

go

No threads ✔

Endless[(🦌🦌🦌) ⊕ (🧝🧝🧝)]

Done

mergePreferred

Endless[(🦌🦌🦌)]

group(9) group(3)
List1[🦌] List1[🧝]

Endless[🦌 ⊗ -🦌] Endless[🧝 ⊗ -🧝]List1[🦌] List1[🧝]

List1[🦌] List1[🧝]

poolReset(vacation) poolReset(makeToys)

Endless[🦌 ⊗ -🦌] Endless[🧝 ⊗ -🧝]

🎅

Endless[(🧝🧝🧝)]

foldMapSequentially(go)

(🦌🦌🦌) ⊕ (🧝🧝🧝)]

Done

deliverPresents

release

(🦌🦌🦌)

(🦌🦌🦌)Done

Done

meetInStudy

release

(🧝🧝🧝)

(🧝🧝🧝)Done

Done

go

No side-effects ✔No threads ✔

Endless[(🦌🦌🦌) ⊕ (🧝🧝🧝)]

Done

mergePreferred

Endless[(🦌🦌🦌)]

group(9) group(3)
List1[🦌] List1[🧝]

Endless[🦌 ⊗ -🦌] Endless[🧝 ⊗ -🧝]List1[🦌] List1[🧝]

List1[🦌] List1[🧝]

poolReset(vacation) poolReset(makeToys)

Endless[🦌 ⊗ -🦌] Endless[🧝 ⊗ -🧝]

🎅

Endless[(🧝🧝🧝)]

foldMapSequentially(go)

(🦌🦌🦌) ⊕ (🧝🧝🧝)]

Done

deliverPresents

release

(🦌🦌🦌)

(🦌🦌🦌)Done

Done

meetInStudy

release

(🧝🧝🧝)

(🧝🧝🧝)Done

Done

go

No side-effects ✔ Type-driven ✔No threads ✔

concurrent operation of 🦌’s and 🧝’s implicit

non-deterministic order of return insert into a sorted list

group forming pull k elements from a sorted stream

priority of 🦌🦌🦌 mergePreferred
(with nested races)

mutual exclusion 
of delivering 🎁 and studying

foldMapSequentially(f)
(critical section defined by f)

Santa: Recap

Clash of Paradigms
⚡ concurrency seamless, sequencing effortful

⬆ need for explicit sequencing sometimes uncovers missing causal link

⚡ obligation to consume everything can be annoying

⬆ prevents many resource leaks

⚡ explicit case analysis of non-determinism

⬆ easier to check correctness

Conclusion

Conclusion
• possible to compose concurrent programs like pure functions

Conclusion
• possible to compose concurrent programs like pure functions

• type-driven development applicable to concurrency

Conclusion
• possible to compose concurrent programs like pure functions

• type-driven development applicable to concurrency

It’s time to

Conclusion
• possible to compose concurrent programs like pure functions

• type-driven development applicable to concurrency

It’s time to
• liberate concurrent programming from the sequential paradigm of threads

Conclusion
• possible to compose concurrent programs like pure functions

• type-driven development applicable to concurrency

It’s time to
• liberate concurrent programming from the sequential paradigm of threads

• liberate functional concurrency from reliance on side effects

Conclusion
• possible to compose concurrent programs like pure functions

• type-driven development applicable to concurrency

It’s time to
• liberate concurrent programming from the sequential paradigm of threads

• liberate functional concurrency from reliance on side effects

Let’s make it happen!

github.com/TomasMikula/libretto/

https://github.com/TomasMikula/libretto/

Questions?

github.com/TomasMikula/libretto/

https://github.com/TomasMikula/libretto/

