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£ Function Composition &

* Input/output types as the only interface
e No hidden communication between functions

-~ Side-Effects <

 Spooky action at a distance
* Erode local reasoning
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Let’s keep trying!
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Libretto

concurrency DSL embedded in Scala

Compose concurrent programs like
we compose pure functions

No reliance on side-effects

No manual thread management
* Implicit concurrency

» causal dependence as the only
form of sequencing



Agenda

1. A taste of Libretto

2. Santa Claus problem
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producer concurrent
choice pair

List[A] = One ® (A & List[A])

* Jype is an interface of interaction
between producer and consumer producer

e Producer decides

* how many elements there are

consumer

e when does each element become available
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List.map(f)
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f f f f <self>

B ® B ® B ® B ® List[B]

Implicitly concurrent
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Signals

(Ping. J (Pong” ) (Done.[ ) (Need )
dismissible non-dismissible
Ping, * must be awalited

e signhal completion of
Pong something expensive










Signals

Signaling.Positive[A] Signaling.Negative[A]
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as they register for the marathon.

signals when the runner Runners appear in the output list
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® List[.A,]

def sortBySignall[A](
using Signaling.Positive[A]
): List[A] —o List[A] =
rec { self =>
A { as =
uncons(as) switch {
case Left(one) =>
nil(one)
case Right(a ® as) =>
insertBySignal(a ® self(as))

134,



| 1st.sortBySignal

® List[.A]

def insertBySignall[A] (
using Signaling.Positive[A]
): (A ® List[A]) —o List[A] =

® List[A]
rec { self =>
def sortBySignal[A]( A { case a ® as =>
using Signaling.Positive[A] race(a ® as) switch 1
): List[A] —o List[A] = case Left(a ® as) =>
rec { self => cons(a ® as)
A { as => case Right(a ® as) =>
uncons(as) switch { uncons(as) switch 1
case Left(one) => case Left(?(one)) =>
nil(one) singletonOnSignal(a)
case Right(a ® as) => case Right(al ® as) =>
insertBySignal(a &® self(as)) cons(al ® self(a ® as))

134, Fri}
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(A7 A ) .
such that (B
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Examples of Duals

(( U L(P ng—(Pin

Given A dual of A, B dual of B

[(A @\B)_-(/A‘& Bj L(A @ ® B)J



https://en.wikipedia.org/wiki/%C4%80

Universal Duals




Universal Duals




Universal Duals

—[A]
A H-[A] TN\
(L N L(—[AD—( A
—[Ping] = Pong —-[A @ B] = -[A] & —-[B]

-[Pong] = Ping -[A & B] = -[A] ® —[B]




Universal Duals

—[A]
A H-I[A] TN )J
—[Ping] = Pong -[A ® B] = -[A] & —-[B]
~{Pongl = Ping ~[A & B] = -[A] ® —[B]

—[List[A]]

I

Endless [-[A]]

—[Endless [A]]

I

List[-[A]]



Non-empty List

List1[A] = A ® List[A]



Non-empty List

List1[A] = A ® List[A]

(List1[A])

borrow

—{( A ® -[A] ) (List1[A])




Non-empty List

List1[A] = A ® List[A]

(List1[A])

[ A ® List[A] )

—{( A ® -[A] ) (List1[A])




Non-empty List

List1[A] = A ® List[A]

(List1[A])

(A ) ( List[A] )

—{( A ® -[A] ) (List1[A])




Non-empty List

List1[A] = A ® List[A]

(A F(-[AT (A { List[A] -

—{( A ® -[A] ) (List1[A])




Non-empty List

List1[A]
(List1[A])
(A ) ( List[A] )

—{ A J{=TAL (A ) List[A] )}~
—{( A ® -[A] ) (List1[A])

= A ® List[A]



Non-empty List

List1[A]
(List1[A])
(A ) ( List[A] )

insertBySignal

—(A (- [A1 )=
¢ 1
—{( A ® —[A] )

([ List1[A] )

= A ® List[A]



Non-empty List

List1[A] = A ® List[A]

r k LiStl[A]J

[ A [ List[A] )

/ A~ N
—[AT (A }{ List[A]

‘ T insertBySignal

—{( A ® -[A] ) (List1[A] }—
: A




Non-empty List

List1[A] = A ® List[A]

(A\

L J

( List[A] )

o~ N
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List[A] -

insertBySignal

|

—{( A ® —[A] )
: A

(List1[A] }—

def borrow[A] (using

) 3

Signaling.Positive[A],
List1[A] —o (A ® —[A] ® Listl[A]) =
A { case a ® as =>
val (na ® al) = constant(forevert)
(a ® na) ® insertBySignal(al ® as)



| 1stl.borrowReset

Different type B of returned element. Reset back to A by a given function.

(List1[A])

( List[A] )

o~ N

—(A (- (Bl J{B }{ List[A] }-
f
A P List[A]l -
insertBySignal
—{ A ® —[B]) (List1[A] }—
: A

def borrowReset[A](f: B —o A)(using
Signaling.Positive[A],
): Listl[A] —o (A ® —-[B] ® Listl1l[A]) =
A { case a ® as =>
val (nb ® b) = constant(forevert)
(a ® nb) ® insertBySignal(f(b) ® as)
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Present a limited supply of elements as an endless supply of borrowed elements.

List1[A]) .
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borrow
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1d self
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pull 1d
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Endless.mergePreferread

- ( Endless[A] ) (_ Endless[A] ) ~
pull 1d

—~( Ping (A )—(Endless[A] )—_Endless[A])

race(ping |*| a) switch {
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A { case a |x| as |x| bs =>
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race downstream actionvs. ((_Ping )~ A )>—{_Endless[A]) (_Endless[A]l)
elem a from preferred input

race(ping |*| a) switch < downstream won
given case Left(2(_) [*]| a) =>
(a |*| as |x| bs) :>> choice(
A { case a |*| as |*| bs => :-—% close
A 1 case a |x| as [x| bs =>—=g (oreferred a not ready yet)
val b [*] bsl = pull(bs)
race(a |*| b) switch {
case Left (a [x| b) => .-
case Right(a [|x| b) => ---

close or pull?
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case Right(?(_) |*x| a) => -

} A preferred elem a won
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( Endless[A] ) ( Endless[A] ) ~

( /\ oull id

race downstream actionvs. ((_Ping )~ A )>—{_Endless[A]) (_Endless[A]l)
elem a from preferred input

race(ping |*| a) switch < downstream won
given case Left(2(_) [*]| a) =>

(a |*| as |x| bs) :>> choice(

A { case a |*| as |*| bs => :-—% close

A 1 case a |x| as [x| bs =>—=g (oreferred a not ready yet)
val b [*] bsl = pull(bs) '
race(a |*| b) switch {

case Left (a [x| b) => .-

case Right(a [|x| b) => ---

close or pull?

give chance to non-preferred input
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} A preferred elem a won
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Endless.mergePreferread

( Endless[A] ) ( Endless[A] ) ~

( /\ oull id

race downstream actionvs. ((_Ping )~ A )>—{_Endless[A]) (_Endless[A]l)
elem a from preferred input

race(ping |x| a) switch { downstream won
given case Left(2(_) |*| a) =>
: close or pull?
(a |*| as |x| bs) :>> choice(

A { case a |x]| as |*x| bs => % close
A 1 case a |x| as [x| bs =>—=g (oreferred a not ready yet)
val b [*] bsl = pull(bs) '
race(a |*| b) switch {
case Left (a [x| b) => .-
case Right(a [|x| b) => ---

race preferred a give chance to non-preferred input

vS. non-preferred b
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case Right(?(_) |*x| a) => -

} A preferred elem a won
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Endless.mergePreferread

( Endless[A] ) (_Endless[A]) ~

( /\ oull id

race downstream actionvs. ((_Ping )~ A )>—{_Endless[A]) (_Endless[A]l)
elem a from preferred input

race(ping |x| a) switch { downstream won
given case Left(2(_) |*| a) =>
: close or pull?
(a |*| as |x| bs) :>> choice(

A { case a |%]| as |*%]| bs == -7 close

A 1 case a |x| as [x| bs =>—=g (oreferred a not ready yet)
val b [*] bsl = pull(bs) '

race(a |*| b) switch {

race preferred a

give chance to non-preferred input
vSs. hon-preferred b - |

case Left (a [*]| b) => - S
case Right(a |*| b) => - ; Explicit
) case analysis |
case Right(?(_) [x| a) => --- ~ of non-deterministic
} A preferred elem a won outcomes |
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The Santa Claus Problem

Santa Claus sleeps in his shop up at the North Pole, and can only be wakened by either all
nine reindeer being back from their year long vacation on the beaches of some tropical island
in the South Pacific, or by some elves who are having some difficulties making the toys. One
elf's problem is never serious enough to wake up Santa (otherwise, he may never get any
sleep), so, the elves visit Santa in a group of three. When three elves are having their
problems solved, any other elves wishing to visit Santa must wait for those elves to return. If
Santa wakes up to find three elves waiting at his shop's door, along with the last reindeer
having come back from the tropics, Santa has decided that the elves can wait until after
Christmas, because it is more important to get his sleigh ready as soon as possible. (It is
assumed that the reindeer don't want to leave the tropics, and therefore they stay there until
the last possible moment. They might not even come back, but since Santa is footing the Dbill
for their year in paradise ... This could also explain the quickness in their delivering of
presents, since the reindeer can't wait to get back to where it is warm.) The penalty for the

last reindeer to arrive is that it must get Santa while the others wait in a warming hut before
being harnessed to the sleigh.

Trono, J.A. (1994). A new exercise in concurrency. ACM SIGCSE Bull., 26, 8-10.



https://doi.org/10.1145/187387.187391
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foldMapSequentially(go)

Done Done
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poolReset (vacation) poolReset (makeToys)
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! I !

—{Endless[¥ ® -] }{Endless[g ® -g]1 List1[%a] H List1[&
group(9) group(3)

—{Endless [ (k)] Endless [ ( gg& )]

mergePreferred

Endless[ (%) © (E22 )]

deliverPresents meetInStudy

— () Hll H Done( (ZEE)

release release

1 )
Done)

@
foldMapSequentially(go)

Done

No threads v/ No side-effects v 8 Type-driven v/




Santa: Recap

concurrent operation of ¥’s and Z.’s implicit
non-deterministic order of return Insert into a sorted list
group forming pull kK elements from a sorted stream
mergePreferred

priority of it -
(with nested races)

mutual exclusion foldMapSequentially(f)
of delivering @ and studying (critical section defined by f)




Clash of Paradigms

concurrency seamless, sequencing effortful

@ need for explicit sequencing sometimes uncovers missing causal link
obligation to consume everything can be annoying

@ prevents many resource leaks
explicit case analysis of hon-determinism

@ easier to check correctness
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Conclusion

possible to compose concurrent programs like pure functions

type-driven development applicable to concurrency

It’s time to

liberate concurrent programming from the sequential paradigm of threads

liberate functional concurrency from reliance on side effects

Let’'s make It happen!
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Questions?

aithub.com/TomasMikula/libretto/
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