Concurrent All The Way Down

Functional Concurrency with Libretto

Tomas Mikula

Functional Concurrency with Libretto

Functional Programming

Functional Programming

£ Function Composition &

Functional Programming

£ Function Composition &

* Input/output types as the only interface
e No hidden communication between functions

Functional Programming

£ Function Composition &

* Input/output types as the only interface
e No hidden communication between functions

- Side-Effects -

Functional Programming

£ Function Composition &

* Input/output types as the only interface
e No hidden communication between functions

-~ Side-Effects <

 Spooky action at a distance
* Erode local reasoning

Concurrent Functional Programming

Concurrent Functional Programming

e Start a bunch of sequential processes

Concurrent Functional Programming

e Start a bunch of sequential processes
(threads / actors / fibers / virtual threads / green threads)

Concurrent Functional Programming

e Start a bunch of sequential processes
(threads / actors / fibers / virtual threads / green threads)

e | et them communicate via side-effects

Concurrent Functional Programming

o Start a bunch of sequential processes
(threads / actors / fibers / virtual threads / green threads)

 Let them communicate via side-effects
(shared mutable state, message passing, ...)

Concurrent Functional Programming

o Start a bunch of sequential processes
(threads / actors / fibers / virtual threads / green threads)

 Let them communicate via side-effects
(shared mutable state, message passing, ...)

Let that sink In ...

Concurrent Functional Programming

o Start a bunch of sequential processes
(threads / actors / fibers / virtual threads / green threads)

 Let them communicate via side-effects
(shared mutable state, message passing, ...)

Let that sink In ...

Functional

Concurrent Functional Programming

o Start a bunch of sequential processes
(threads / actors / fibers / virtual threads / green threads)

 Let them communicate via side-effects
(shared mutable state, message passing, ...)

Let that sink In ...

Functional concurrency

Concurrent Functional Programming

o Start a bunch of sequential processes
(threads / actors / fibers / virtual threads / green threads)

 Let them communicate via side-effects
(shared mutable state, message passing, ...)

Let that sink In ...

Functional concurrency

built on

side-effects

Concurrent Functional Programming

o Start a bunch of sequential processes
(threads / actors / fibers / virtual threads / green threads)

 Let them communicate via side-effects
(shared mutable state, message passing, ...)

Let that sink In ...

Functional concurrency

built on

side-effects sequential
ProCesses

?

Composing

Functions

o
S

Composing

Functions

e |
@@%@

Composing

Functions

Threads

Composing

Functions Threads

We still don’t know how to do
Concurrent Functional Programming

We still don’t know how to do
Concurrent Functional Programming

Let’s keep trying!

(Goals

 Compose concurrent programs like
we compose pure functions

e No reliance on side-effects

 No manual thread management
* Implicit concurrency

» causal dependence as the only
form of sequencing

 Compose concurrent programs like
we compose pure functions

e No reliance on side-effects

 No manual thread management
* Implicit concurrency

» causal dependence as the only
form of sequencing

Libretto

concurrency DSL embedded in Scala

Compose concurrent programs like
we compose pure functions

No reliance on side-effects

No manual thread management
* Implicit concurrency

» causal dependence as the only
form of sequencing

Agenda

1. A taste of Libretto

2. Santa Claus problem

|_ist In Libretto

List[A] = One @ (A ® List[A])

|_ist In Libretto

producer concurrent
choice pair

List[A] = One ® (A & List[A])

* Jype is an interface of interaction
between producer and consumer producer

e Producer decides

* how many elements there are

consumer

e when does each element become available

|_ist In Libretto

List[A] = One © (A ® List[A])

|_ist In Libretto

List[A] = One © (A ® List[A])

producer

One ® (A ® List[A])

consumer

|_ist In Libretto

List[A] = One © (A ® List[A])

producer

(One<®, (A ® List[A])

consumer

|_ist In Libretto

List[A] = One © (A ® List[A])

producer

A ® List[A]

consumer

|_ist In Libretto

List[A] = One © (A ® List[A])

producer

A ® (One ® (A ® List[A]))

consumer

|_ist In Libretto

List[A] = One © (A ® List[A])

producer

(A ® (One® (A ® List[A]))]

consumer

|_ist In Libretto

List[A] = One © (A ® List[A])

producer

A ® List[A])

consumer

|_ist In Libretto

List[A] = One © (A ® List[A])

producer

A ® A ® List[A]

consumer

|_ist In Libretto

List[A] = One © (A ® List[A])

|_ist In Libretto

List[A] = One © (A ® List[A])

producer

LA FUA A Listial)

consumer

|_ist In Libretto

List[A] = One © (A ® List[A])

producer

consumer

|_ist In Libretto

List[A] = One © (A ® List[A])

producer

€5 3" GEIm)

consumer

|_ist In Libretto

List[A] = One © (A ® List[A])

producer

List [Ping]

consumer

|_ist In Libretto

List[A] = One © (A ® List[A])

producer

(PingF—(Ring}—List [Ping]

consumer

|_ist In Libretto

List[A] = One © (A ® List[A])

producer

One List[One]

consumer

|_ist In Libretto

List[A] = One © (A ® List[A])

producer

(& &>) Listlonel

consumer

|_ist In Libretto

List[A] = One © (A ® List[A])

Int ® Pong Int ® Pongl—{List[Int ® Pong]

consumer

|_ist In Libretto

List[A] = One © (A ® List[A])

producer

Int ® Po@—@nt ® Pong List[Int ® Pong]

consumer

List.map(f)

List[A]

List[B]

List.map(f)

List[A]
unpack
(One ® (A ® List[A]))
(One ® (B ® List[B]))
pack

List[B]

List.map(f)

List [A]

unpack

One ® (A ® List[A])

—(A ® List[A]l J—

One ® (B ® List[B]) —One ® (B ® List[B]) —

One ® (B ® List[B])]

pack

List [B]

List.map(f)

List [A]

unpack

One ® (A ® List[A])

—(A ® List[A]l J—

injectL

One ® (B ® List[B]) —One ® (B ® List[B]) —

One ® (B ® List[B])]

pack

List [B]

List.map(f)

List [A]

unpack

One ® (A ® List[A])

—(A ® List[A]l J—

£ <self>

injectL

(B ® List[B])
injectR

One ® (B ® List[B]) —One ® (B ® List[B]) —

One ® (B ® List[B])]

pack

List [B]

List.map(f)

List [A]

def map[A, BI(
f: A -0 B
): List[A] —o List[B] =

unpack

One @ (A ® List[A])

—(A ® List[A] J—

// point-free

f <self>
s rec { self =>
injectL - _ N
| B ® List[B] | unpack >
injectR either (
One ® (B ® List[B]) —(One ® (B ® List[B]) — injectlL,
par(f, self) > injectR
One ® (B ® List[B])]) >
pack pack

List [B] }

unpack

List.map(f)

List [A]

injectL

One ® (A ® List[A])

r

(A ® List[A])

f <self>

(B ® List[B])

One ® (B ® List[B])

—One ® (B ® List[B]) —

injectR

One ® (B ® List[B])]

pack

List [B]

def map[A, BI(
f: A -0 B
): List[A] —o List[B] =

// point-full

rec { self =>
A { as =>
pack (
unpack(as) switch {
case Left(one) =>
injectL(one)

case Right(h ® t) =>
injectR(f(h) ® self(t))
F) I}

unpack

List.map(f)

List [A]

injectL

One ® (A ® List[A])

r

(A ® List[A])

f <self>

One ® (B ® List[B])

—One ® (B ® List[B]) —

~\

W,

(B ® List[B])

injectR

One ® (B ® List[B])]

pack

List [B]

def map[A, BI(
f: A -0 B
): List[A] —o List[B] =

// point-full

rec { self =>
A { as =>
pack (
unpack(as) switch {
case Left(one) =>
injectL(one)

case Right(h ® t) =>
injectR(f(h) ® self(t))
F) I}

List.map(f)

A ® List[A]
f <self>
B ® List][B]

List.map(f)

A ® A ® List[A]
f f <self>
B ® B ® List[B]

List.map(f)

A ® A ® A ® List[A]

f f

f

<self>

B

B ® B ® B ® List[B]

:

List.map(f)

A ® A ® A ® A ® List[A]

f f f f <self>

B ® B ® B ® B ® List[B]

List.map(f)

A ® A ® A ® A ® List[A]

f f f f <self>

B ® B ® B ® B ® List[B]

Implicitly concurrent

Endless

Endless[A] = One & (A ® Endless[A])

Endless

Endless[A] = One & (A ® Endless[A])

End less

consumer
choice

Endless[A] = One & (A ® Endless[A])

* consumer may
e close
e ask for next element
e producer has to oblige
e co-L1st

End less

consumer
choice

Endless[A] = One & (A ® Endless[A])

* consumer may
e close

e ask for next element
e producer has to oblige
e co-L1st

List[A] = One @ (A ® List[A])

producer
choice

Signals

-/
-/

(Ping (Pong

Signals

(Pong }

(Ping

-/

dismissible

Signals

(Ping.) (Pong”)
dismissible
Ping,) One

One Pong

Signals

(;Pong }

-/

L P1ng

dismissible

Ping,)
[Pong]

Signals

(Ping. J (Pong”) (Done.[) (Need)
dismissible non-dismissible
Ping, * must be awalited

e signhal completion of
Pong something expensive

Signals

Signaling.Positive[A] Signaling.Negative[A]

Sequencing

Signaling.Positive[A]

Deferrable.Positive[B]

Sequencing

Signaling.Positive[A]

Junction.Positive[A]

Racing

e Test which of two concurrent
events occurred first

e Source of non-determinism

Racing

e Test which of two concurrent
events occurred first

e Source of non-determinism

Ping]————{jPing

racePings

One ® One

Racing

 Test which of two concurrent def racelA, Bl(using

events occurred first Signaling.Positivel[Al],
Signaling.Positivel[B],

e Source of non-determinism) =

A }—— B
Ping]—(Ping
racePingsJ
One & One
A®B ®© A ®B

Racing

» Test which of two concurrent def racelA, Bl(using

events occurred first Signaling.Positivel[Al],
Signaling.Positivel[B],

) =

e Source of non-determinism

|| /|
A }——— B
ping }——{ Pin A)\
. . _Ping H{_ A} Ping H_ B
o
racePings
One ® One

A®B © A®B

Racing

e Test which of two concurrent
events occurred first

e Source of non-determinism

Ping]————{fPing

racePings

One ® One

def racel[A, Bl (using
Signaling.Positive[A],
Signaling.Positivel[B],

~~
[l

A®B © A®B

Racing

» Test which of two concurrent def racelA, Bl(using

events occurred first Signaling.Positivel[Al],
Signaling.Positivel[B],

) =

e Source of non-determinism

N

_Ping JH{ A J}H Ping H
v N
Ping)—(Ping]——[A j—[B

raceP1ings

Ping]————{fPing

racePings

One & One One & One] [

Racing

» Test which of two concurrent def racelA, Bl(using

events occurred first Signaling.Positivel[Al],
Signaling.Positivel[B],

) =

e Source of non-determinism

N

Ping H A JH{ Ping H
v N
Ping)—[Ping]——(A]—(B

raceP1ings

Ping]————{fPing

racePings

One & One One & One] [

| 1st.sortBySignal

Runners added to the list
as they register for the marathon.

® List[.A]

| 1st.sortBySignal

Runners added to the list
as they register for the marathon.

sighals when the runner
finished the marathon

| 1st.sortBySignal

Runners added to the list
as they register for the marathon.

Runners appear in the output list
as they finish the marathon.

sighals when the runner
finished the marathon

| 1st.sortBySignal

Runners added to the list
as they register for the marathon.

signals when the runner Runners appear in the output list
finished the marathon as they finish the marathon.

| 1st.sortBySignal

® X ® List[x]

® List[A,]

| 1st.sortBySignal

® List[.A]

® List[.A,]

def sortBySignall[A](
using Signaling.Positive[A]
): List[A] —o List[A] =
rec { self =>
A { as =
uncons(as) switch {
case Left(one) =>
nil(one)
case Right(a ® as) =>
insertBySignal(a ® self(as))

134,

| 1st.sortBySignal

® List[.A]

def insertBySignall[A] (
using Signaling.Positive[A]
): (A ® List[A]) —o List[A] =

® List[A]
rec { self =>
def sortBySignal[A](A { case a ® as =>
using Signaling.Positive[A] race(a ® as) switch 1
): List[A] —o List[A] = case Left(a ® as) =>
rec { self => cons(a ® as)
A { as => case Right(a ® as) =>
uncons(as) switch { uncons(as) switch 1
case Left(one) => case Left(?(one)) =>
nil(one) singletonOnSignal(a)
case Right(a ® as) => case Right(al ® as) =>
insertBySignal(a &® self(as)) cons(al ® self(a ® as))

134, Fri}

Duals

[.—.-] (B
is the dual of if there exist N and

Duals

[.—.-] (B
is the dual of if there exist N and

(A7 A) .
such that (B
‘ (A F

(B A

1da

and -

1dg

Examples of Duals

((U L(P ng—(Pin

Given A dual of A, B dual of B

[(A @\B)_-(/A‘& Bj L(A @ ® B)J

https://en.wikipedia.org/wiki/%C4%80

Universal Duals

Universal Duals

Universal Duals

—[A]
A H-[A] TN\
(L N L(—[AD—(A
—[Ping] = Pong —-[A @ B] = -[A] & —-[B]

-[Pong] = Ping -[A & B] = -[A] ® —[B]

Universal Duals

—[A]
A H-I[A] TN)J
—[Ping] = Pong -[A ® B] = -[A] & —-[B]
~{Pongl = Ping ~[A & B] = -[A] ® —[B]

—[List[A]]

I

Endless [-[A]]

—[Endless [A]]

I

List[-[A]]

Non-empty List

List1[A] = A ® List[A]

Non-empty List

List1[A] = A ® List[A]

(List1[A])

borrow

—{(A ® -[A]) (List1[A])

Non-empty List

List1[A] = A ® List[A]

(List1[A])

[A ® List[A])

—{(A ® -[A]) (List1[A])

Non-empty List

List1[A] = A ® List[A]

(List1[A])

(A) (List[A])

—{(A ® -[A]) (List1[A])

Non-empty List

List1[A] = A ® List[A]

(A F(-[AT (A { List[A] -

—{(A ® -[A]) (List1[A])

Non-empty List

List1[A]
(List1[A])
(A) (List[A])

—{ A J{=TAL (A) List[A])}~
—{(A ® -[A]) (List1[A])

= A ® List[A]

Non-empty List

List1[A]
(List1[A])
(A) (List[A])

insertBySignal

—(A (- [A1)=
¢ 1
—{(A ® —[A])

([List1[A])

= A ® List[A]

Non-empty List

List1[A] = A ® List[A]

r k LiStl[A]J

[A [List[A])

/ A~ N
—[AT (A }{ List[A]

‘ T insertBySignal

—{(A ® -[A]) (List1[A] }—
: A

Non-empty List

List1[A] = A ® List[A]

(A\

L J

(List[A])

o~ N

Sosan=

List[A] -

insertBySignal

|

—{(A ® —[A])
: A

(List1[A] }—

def borrow[A] (using

) 3

Signaling.Positive[A],
List1[A] —o (A ® —[A] ® Listl[A]) =
A { case a ® as =>
val (na ® al) = constant(forevert)
(a ® na) ® insertBySignal(al ® as)

| 1stl.borrowReset

Different type B of returned element. Reset back to A by a given function.

(List1[A])

(List[A])

o~ N

—(A (- (Bl J{B }{ List[A] }-
f
A P List[A]l -
insertBySignal
—{ A ® —[B]) (List1[A] }—
: A

def borrowReset[A](f: B —o A)(using
Signaling.Positive[A],
): Listl[A] —o (A ® —-[B] ® Listl1l[A]) =
A { case a ® as =>
val (nb ® b) = constant(forevert)
(a ® nb) ® insertBySignal(f(b) ® as)

EFnd less.pool

Present a limited supply of elements as an endless supply of borrowed elements.

List1[A]

Endless[A ® —[A]] —————{ | ist1[A]

EFnd less.pool

Present a limited supply of elements as an endless supply of borrowed elements.

List1[A]

......................................

......................................

Endless[A ® —[A]] ———— 1 { | ist1[A]

EFnd less.pool

Present a limited supply of elements as an endless supply of borrowed elements.

List1[A]

Endless[A ® —[A]] ———— 1 { | ist1[A]

Endless.pool

Present a limited supply of elements as an endless supply of borrowed elements.

List1[A]) .

~ (List1[A]) ~

Endless[A ® —[A]] ————— 1 { | ist1[A]

Endless.pool

Present a limited supply of elements as an endless supply of borrowed elements.

List1[A]) .

~ [List1[A]) ~

borrow
(A ® —[A]) [List1[A])

\(A ® —[A])—(Endless[A ® —[A]D—[Listl[ADJ

Endless[A ® —[A]] ————— 1 { | ist1[A]

Endless.pool

Present a limited supply of elements as an endless supply of borrowed elements.

List1[A]) .
- [List1[A]) ~
borrow
(A ® —[A]) [List1[A])
1d self
\(A ® —[A])—(Endless[A ® —[A]D—[Listl[ADJ

Endless[A ® —[A]] ————— 1 { | ist1[A]

Endless.poolReset(f)

Present a limited supply of elements as an endless supply of borrowed elements.

List1[A]) .

- [List1[A]) ~
borrowReset (f)
(A ® —[B]) [List1[A])
1d self
\(A ® —[B])—(Endless[A ® —[B]D—[Listl[A]y

Endless[A ® —[B]] ——————{ | ist1[A]

Endless.mapSequentially(f)

* Delay pulling from upstream until previous element has been “handled”

(Endless [A])

(Endless [B])

Endless.mapSequentially(f)

* Delay pulling from upstream until previous element has been “handled”

(Endless [A])

given

II”']'
(B H{ Pinc

“handled”

(Endless [B])

Endless.mapSequentially(f)

* Delay pulling from upstream until previous element has been “handled”

(Endless [A])

(One

&

(B

®

Endless[B])

W,

(Endless [B])

given

=

P1ino

“handled”

Endless.mapSequentially(f)

* Delay pulling from upstream until previous element has been “handled”

Endless[A]) N given

Endless [A] r (Endless [A]) 1 "3
(B H{ Pinc

“handled”

(B) (Endless [B] F
One & (B ® Endless[B]) M

S (Endless [B]) g

Endless.mapSequentially(f)

* Delay pulling from upstream until previous element has been “handled”

Endless[A]) N given

Endless [A] r (Endless [A]) 1 "3
(B H{ Pinc

“handled”

(B) (Endless [B] F
One & (B ® Endless[B]) M

S (Endless [B]) g

Endless.mapSequentially(f)

* Delay pulling from upstream until previous element has been “handled”

Endless[A])

R given
Endless [A] R ¢ (Endless [A]) 1 >
pull
(A) (Endless[A])
A J L) |
(B H(Pinc “handled”
{ B) (Endless [B] F
One & (B ® Endless[B]) H

- (Endless [B]) /

Endless.mapSequentially(f)

* Delay pulling from upstream until previous element has been “handled”

Endless[A])

R given
Endless [A] R ¢ (Endless [A]) 1 >
pull
(A) (Endless[A])
A J L) |
T (B H(Pinc “handled”
. B)
_D J
{ B) (Endless [B] F
One & (B ® Endless[B]) H

- (Endless [B]) /

Endless.mapSequentially(f)

* Delay pulling from upstream until previous element has been “handled”

Endless[A])

R given
Endless [A] R ¢ (Endless [A]) 1 >
pull
(A) (Endless[A])
A J L) |
T (B H(Pinc “handled”

. B)

(B {Ping)

{ B) (Endless [B] F

One & (B ® Endless[B])

- (Endless [B]) /

Endless.mapSequentially(f)

* Delay pulling from upstream until previous element has been “handled”

Endless[A])

R given
Endless [A] R ¢ (Endless [A]) 1 >
pull
(A) (Endless[A])
e L) |
T (B H(Pinc “handled”

. B)

(B }{Ping}{Pong)

{ B) (Endless [B] F

One & (B ® Endless[B])

- (Endless [B]) /

Endless.mapSequentially(f)

* Delay pulling from upstream until previous element has been “handled”

Endless [A])

Endless[A] N (Endless [A])

pull A
(A) (Endless[A])

N given

(B H(Pinc “handled”

action on tail won’t propagate
{Endless [A] F upstream until Ping from head
||

(Endless [B] F

One & (B ® Endless[B]) M

S (Endless [B]) g

Endless.mapSequentially(f)

* Delay pulling from upstream until previous element has been “handled”

Endless [A])

Endless[A] N (Endless [A])

pull A
(A) (Endless[A])

N given

(B H(Pinc “handled”

action on tail won’t propagate
{Endless [A] F upstream until Ping from head
||

self
(Endless [B] F

One & (B ® Endless[B]) M

S (Endless [B]) g

Endless.mapSequentially(f)

* Delay pulling from upstream until previous element has been “handled”

Endless [A])

Endless[A] N (Endless [A])

pull A
(A) (Endless[A])

N given

(B H(Pinc “handled”

action on tail won’t propagate
{Endless [A] F upstream until Ping from head
||

self
(Endless [B] F

One & (B ® Endless[B]) M

S (Endless [B]) g

Endless.mergePreferread

(Endless[A]) (Endless[A])

preferred
iInput

(Endless[A])

Endless.mergePreferread

(Endless[A]) (Endless[A])
pull

Endless[A])—

(Endless[A])

Endless.mergePreferread

- (Endless[A]) (_ Endless[A]) ~
pull

Endless[A])—

. (Endless[A]) 7

Endless.mergePreferread

- (Endless[A]) (_ Endless[A]) ~
pull

Endless[A])—

A A

e pow (A ® Endless[A])

— (One c%: (A ® Endless[A])
N ~ (Endless[A]) /

_—/ _—/

Endless.mergePreferread

- (Endless[A]) (Endless[A]) ~
pull 1d

—~(Ping (A)—(Endless[A])—_Endless[A])

A

e pow (A ® Endless[A])

(One &Iz (A ® Endless[A])
S — (Endless[A]) g

_—/ _—/

Endless.mergePreferread

- (Endless[A]) (_ Endless[A]) ~
pull 1d

—~(Ping (A)—(Endless[A])—_Endless[A])

race(ping |*| a) switch {

given case Left(2(_) [*]| a) =>
(a |*| as |x| bs) :>> choice(
A { case a |*| as |*]| bs => -:-,

A { case a |x| as |x| bs =>
val b [*] bsl = pull(bs)
race(a |*| b) switch {

case Left (a |*] b) => .-
case Right(a |x| b) => .-

139

case Right(?(_) |x| a) => ---

) A
—(Pow (A ® Endless[A]))
—{(__One % (A ® Endless[A])
N — (Endless[A]) /

_—/

Endless.mergePreferread

(Endless[A]) (_Endless[A]) ~

(7~ N\ pull id

race downstream actionvs. ((_Ping)~ A)>—{_Endless[A]) (_Endless[A]l)
elem a from preferred input

race(ping |*| a) switch {

given case Left(2(_) [*]| a) =>
(a |*| as |x| bs) :>> choice(
A { case a |*| as |*]| bs => -:-,

A { case a |x| as |x| bs =>
val b [*] bsl = pull(bs)
race(a |*| b) switch {

case Left (a |*] b) => .-
case Right(a [|x| b) => ---

139

case Right(?(_) |x| a) => ---

) A
—(Pow (A ® Endless[A]))
—{(__One % (A ® Endless[A])
N — (Endless[A]) /

_—/

Endless.mergePreferread

(Endless[A]) (Endless[A]) ~

(/\ oull id

race downstream actionvs. ((_Ping)~ A)>—{_Endless[A]) (_Endless[A]l)
elem a from preferred input

race(ping [*x| a) switch 1 downstream won
given case Left(2(_) [*]| a) =>
(a |*| as |x| bs) :>> choice(
A { case a |x| as |*]| bs = -,

A { case a |x| as |x| bs =>
val b [*] bsl = pull(bs)
race(a |*| b) switch {

case Left (a |*] b) => .-
case Right(a [|x| b) => ---

139

case Right(?(_) |*x| a) => -

} A preferred elem a won

e pow (A ® Endless[A]))

__(One % (A ® Endless[A])
N (Endless[A]) /

_—/

Endless.mergePreferread

(Endless[A]) (Endless[A]) ~

(/\ oull id

race downstream actionvs. ((_Ping)~ A)>—{_Endless[A]) (_Endless[A]l)
elem a from preferred input

race(ping |*| a) switch < downstream won
given case Left(2(_) [*]| a) =>
(a |*| as |x| bs) :>> choice(
A { case a |x| as |*]| bs = -,
A { case a |x| as |x| bs =>
val b [*] bsl = pull(bs)
race(a |*| b) switch {
case Left (a [x| b) => .-
case Right(a [|x| b) => ---

close or pull?

139

case Right(?(_) |*x| a) => -

} A preferred elem a won

e pow (A ® Endless[A]))

__(One % (A ® Endless[A])
N (Endless[A]) /

_—/

Endless.mergePreferread

(Endless[A]) (Endless[A]) ~

(/\ oull id

race downstream actionvs. ((_Ping)~ A)>—{_Endless[A]) (_Endless[A]l)
elem a from preferred input

race(ping |*| a) switch < downstream won
given case Left(2(_) [*]| a) =>
(a |*| as |x| bs) :>> choice(
A { case a |*| as |*| bs => :-—% close
A { case a |x| as |x| bs =>
val b [*] bsl = pull(bs)
race(a |*| b) switch {
case Left (a [x| b) => .-
case Right(a [|x| b) => ---

close or pull?

139

case Right(?(_) |*x| a) => -

} A preferred elem a won

e pow (A ® Endless[A]))

__(One % (A ® Endless[A])
N (Endless[A]) /

_—/

Endless.mergePreferread

(Endless[A]) (Endless[A]) ~

(/\ oull id

race downstream actionvs. ((_Ping)~ A)>—{_Endless[A]) (_Endless[A]l)
elem a from preferred input

race(ping |*| a) switch < downstream won
given case Left(2(_) [*]| a) =>
(a |*| as |x| bs) :>> choice(
A { case a |*| as |*| bs => :-—% close
A 1 case a |x| as [x| bs =>—=g (oreferred a not ready yet)
val b [*] bsl = pull(bs)
race(a |*| b) switch {
case Left (a [x| b) => .-
case Right(a [|x| b) => ---

close or pull?

139

case Right(?(_) |*x| a) => -

} A preferred elem a won

e pow (A ® Endless[A]))

__(One % (A ® Endless[A])
N (Endless[A]) /

_—/

Endless.mergePreferread

(Endless[A]) (Endless[A]) ~

(/\ oull id

race downstream actionvs. ((_Ping)~ A)>—{_Endless[A]) (_Endless[A]l)
elem a from preferred input

race(ping |*| a) switch < downstream won
given case Left(2(_) [*]| a) =>

(a |*| as |x| bs) :>> choice(

A { case a |*| as |*| bs => :-—% close

A 1 case a |x| as [x| bs =>—=g (oreferred a not ready yet)
val b [*] bsl = pull(bs) '
race(a |*| b) switch {

case Left (a [x| b) => .-

case Right(a [|x| b) => ---

close or pull?

give chance to non-preferred input

139

case Right(?(_) |*x| a) => -

} A preferred elem a won

e pow (A ® Endless[A]))

— (One c%: (A ® Endless[A])
N (Endless[A]) /

_—/

Endless.mergePreferread

(Endless[A]) (Endless[A]) ~

(/\ oull id

race downstream actionvs. ((_Ping)~ A)>—{_Endless[A]) (_Endless[A]l)
elem a from preferred input

race(ping |x| a) switch { downstream won
given case Left(2(_) |*| a) =>
: close or pull?
(a |*| as |x| bs) :>> choice(

A { case a |x]| as |*x| bs => % close
A 1 case a |x| as [x| bs =>—=g (oreferred a not ready yet)
val b [*] bsl = pull(bs) '
race(a |*| b) switch {
case Left (a [x| b) => .-
case Right(a [|x| b) => ---

race preferred a give chance to non-preferred input

vS. non-preferred b

139

case Right(?(_) |*x| a) => -

} A preferred elem a won

e pow (A ® Endless[A]))

— (One c%: (A ® Endless[A])
N (Endless[A]) /

_—/

Endless.mergePreferread

(Endless[A]) (_Endless[A]) ~

(/\ oull id

race downstream actionvs. ((_Ping)~ A)>—{_Endless[A]) (_Endless[A]l)
elem a from preferred input

race(ping |x| a) switch { downstream won
given case Left(2(_) |*| a) =>
: close or pull?
(a |*| as |x| bs) :>> choice(

A { case a |%]| as |*%]| bs == -7 close

A 1 case a |x| as [x| bs =>—=g (oreferred a not ready yet)
val b [*] bsl = pull(bs) '

race(a |*| b) switch {

race preferred a

give chance to non-preferred input
vSs. hon-preferred b - |

case Left (a [*]| b) => - S
case Right(a |*| b) => - ; Explicit
) case analysis |
case Right(?(_) [x| a) => --- ~ of non-deterministic
} A preferred elem a won outcomes |

e pow (A ® Endless[A]))

— (One c%: (A ® Endless[A])
N (Endless[A]) /

_—/

The Santa Claus Problem

https://santaclausproblem.cs.unlv.edu/

https://santaclausproblem.cs.unlv.edu/

The Santa Claus Problem

Santa Claus sleeps in his shop up at the North Pole, and can only be wakened by either all
nine reindeer being back from their year long vacation on the beaches of some tropical island
in the South Pacific, or by some elves who are having some difficulties making the toys. One
elf's problem is never serious enough to wake up Santa (otherwise, he may never get any
sleep), so, the elves visit Santa in a group of three. When three elves are having their
problems solved, any other elves wishing to visit Santa must wait for those elves to return. If
Santa wakes up to find three elves waiting at his shop's door, along with the last reindeer
having come back from the tropics, Santa has decided that the elves can wait until after
Christmas, because it is more important to get his sleigh ready as soon as possible. (It is
assumed that the reindeer don't want to leave the tropics, and therefore they stay there until
the last possible moment. They might not even come back, but since Santa is footing the Dbill
for their year in paradise ... This could also explain the quickness in their delivering of
presents, since the reindeer can't wait to get back to where it is warm.) The penalty for the

last reindeer to arrive is that it must get Santa while the others wait in a warming hut before
being harnessed to the sleigh.

Trono, J.A. (1994). A new exercise in concurrency. ACM SIGCSE Bull., 26, 8-10.

https://doi.org/10.1145/187387.187391

The Santa Claus Problem

‘\%\; s 50 .' . / - & ._\;. 4
LAY , .-' ';

1

ssss
) S ° e X e - e e ¢

by vecteezy.com

http://vecteezy.com

The Santa Claus Problem

non-deterministic
order of return

‘\%\; s 50 .' . / - & ._\;. 4
LAY , .-' '; -

d
- NP

ssss
) S ° e X e - e e ¢

by vecteezy.com

http://vecteezy.com

The Santa Claus Problem

non-deterministic
order of return

‘\%\; s 50 .' . / - & ._\;. 4
LAY , .-' '; -

d
- NP

ssss
) S ° e X e - e e ¢

by vecteezy.com

http://vecteezy.com

Listl[¥])———7————List1[§]

poolReset (vacation) poolReset (makeToys)

—Endless % ® —%]{Listl[%]H{Endless[@ ® -@1H List1[&])}

! I !

—{Endless[¥ ® -] }{Endless[g ® -g]1 List1[%a] H List1[&
group(9) group(3)

—{Endless [(k)] Endless [(gg&)]

mergePreferred

Endless[(%) © (E22)]
S

()
. - 4 -

Done

Listl[¥])———T1———List1[§]

poolReset (vacation) poolReset (makeToys)

—Endless % ® —%]{Listl[%]H{Endless[@ ® -@1H List1[&])}

! I !

—(Endless [4 ® -] F{Endless[@ ® -@1H{Listl[¥] H List1[g]

group(9) group(3)
—(Endless [(%)] - Endless [(&5)] (k) @ (

mergePreferred

Endless[(%) © (282)]

foldMapSequentially(go)

Done Done

Listl[¥])———7————List1[§]

poolReset (vacation) poolReset (makeToys)

—Endless % ® —%]{Listl[%]H{Endless[@ ® -@1H List1[&])}

—(Endless[% ® —%]}{Endless[@ ® -g]
group(9) group(3)

—{Endless [(k)] Endless [(gg&)]

mergePreferred

Endless[(%) © (E22)]

@
foldMapSequentially(go)

Done

! I !

Listl[%] H List1[&

deliverPresents

—{ (e)

release

—{Doné}-

meetInStudy

\;/\ ;)\ ;/P
Al A i]

release

1)
Done)

Listl[¥])———7————List1[§]

poolReset (vacation) poolReset (makeToys)

—Endless % ® —%]{Listl[%]H{Endless[@ ® -@1H List1[&])}

! I !

—{Endless[¥ ® -] }{Endless[g ® -g]1 List1[%a] H List1[&
group(9) group(3)

—{Endless [(k)] Endless [(gg&)]

mergePreferred

Endless[(%) © (E22)]

deliverPresents meetInStudy

— () Hll H Done((ZEE)

release release

@
foldMapSequentially(go)

1)
Done)

Done

No threads v/

Listl[¥])———7————List1[§]

poolReset (vacation) poolReset (makeToys)

—Endless % ® —%]{Listl[%]H{Endless[@ ® -@1H List1[&])}

! I !

—{Endless[¥ ® -] }{Endless[g ® -g]1 List1[%a] H List1[&
group(9) group(3)

—{Endless [(k)] Endless [(gg&)]

mergePreferred

Endless[(%) © (E22)]

deliverPresents meetInStudy

— () Hll H Done((ZEE)

release release

1)
Done)

@
foldMapSequentially(go)

Done

No threads v/ No side-effects v/

Listl[¥])———7————List1[§]

poolReset (vacation) poolReset (makeToys)

—Endless % ® —%]{Listl[%]H{Endless[@ ® -@1H List1[&])}

! I !

—{Endless[¥ ® -] }{Endless[g ® -g]1 List1[%a] H List1[&
group(9) group(3)

—{Endless [(k)] Endless [(gg&)]

mergePreferred

Endless[(%) © (E22)]

deliverPresents meetInStudy

— () Hll H Done((ZEE)

release release

1)
Done)

@
foldMapSequentially(go)

Done

No threads v/ No side-effects v 8 Type-driven v/

Santa: Recap

concurrent operation of ¥’s and Z.’s implicit
non-deterministic order of return Insert into a sorted list
group forming pull kK elements from a sorted stream
mergePreferred

priority of it -
(with nested races)

mutual exclusion foldMapSequentially(f)
of delivering @ and studying (critical section defined by f)

Clash of Paradigms

concurrency seamless, sequencing effortful

@ need for explicit sequencing sometimes uncovers missing causal link
obligation to consume everything can be annoying

@ prevents many resource leaks
explicit case analysis of hon-determinism

@ easier to check correctness

Conclusion

Conclusion

e possible to compose concurrent programs like pure functions

Conclusion

e possible to compose concurrent programs like pure functions

* type-driven development applicable to concurrency

Conclusion

e possible to compose concurrent programs like pure functions

* type-driven development applicable to concurrency

It’s time to

Conclusion

e possible to compose concurrent programs like pure functions

* type-driven development applicable to concurrency

It’s time to

* liberate concurrent programming from the sequential paradigm of threads

Conclusion

possible to compose concurrent programs like pure functions

type-driven development applicable to concurrency

It’s time to

liberate concurrent programming from the sequential paradigm of threads

liberate functional concurrency from reliance on side effects

Conclusion

possible to compose concurrent programs like pure functions

type-driven development applicable to concurrency

It’s time to

liberate concurrent programming from the sequential paradigm of threads

liberate functional concurrency from reliance on side effects

Let’'s make It happen!

agithub.com/TomasMikula/libretto/

https://github.com/TomasMikula/libretto/

Questions?

aithub.com/TomasMikula/libretto/

https://github.com/TomasMikula/libretto/

